Answer to Question #118711 in Calculus for Max

Question #118711
Given that M =

2 −1
−3 4 !
and that M^2 − 6M + kI = 0, find k.
1
Expert's answer
2020-05-28T19:22:19-0400
M=(2134)M=\begin{pmatrix} 2 & -1 \\ -3 & 4 \end{pmatrix}

M2=(2134)(2134)=M^2=\begin{pmatrix} 2 & -1 \\ -3 & 4 \end{pmatrix}\begin{pmatrix} 2 & -1 \\ -3 & 4 \end{pmatrix}=

=(2(2)1(3)2(1)1(4)3(2)+4(3)3(1)+4(4))==\begin{pmatrix} 2(2)-1(-3) & 2(-1)-1(4) \\ -3(2)+4(-3) & -3(-1)+4(4) \end{pmatrix}=

=(761819)=\begin{pmatrix} 7 & -6 \\ -18 & 19 \end{pmatrix}

M26M=(761819)(1261824)=M^2-6M=\begin{pmatrix} 7 & -6 \\ -18 & 19 \end{pmatrix}-\begin{pmatrix} 12 & -6 \\ -18 & 24 \end{pmatrix}=

=(5005)=5(1001)=5I=\begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix}=-5\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}=-5I

M26M+kI=5I+kI=0M^2-6M+kI=-5I+kI=0

k=5k=5



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment