Since the two curves will intersect at
2 sin θ = 1 → θ = π / 6 , θ = 5 π / 6 2\sin \theta =1 \ \ \ \to \theta = \pi /6,\ \ \theta =5\pi/6 2 sin θ = 1 → θ = π /6 , θ = 5 π /6
Since
1 ≥ 2 sin θ , for π / 6 ≤ x ≤ 5 π / 6 1\geq 2\sin \theta ,\ \ \ \ \ \text{for } \ \ \ \pi/6\leq x\leq 5\pi/6 1 ≥ 2 sin θ , for π /6 ≤ x ≤ 5 π /6
Then area of the region inside the circle r = 2 sin θ r=2\sinθ r = 2 sin θ and outside the circle r=1, given by
A = 1 2 ∫ α β ( f 2 ( θ ) 2 − f 1 ( θ ) 2 ) d θ = 1 2 ∫ π / 6 5 π / 6 ( 4 sin 2 θ − 1 ) d θ = 1 2 ∫ π / 6 5 π / 6 ( 2 − 2 cos 2 θ − 1 ) d θ = 1 2 ∫ π / 6 5 π / 6 ( 1 − 2 cos 2 θ ) d θ = 1 2 ( θ − sin 2 θ ) ∣ π / 6 5 π / 6 = 1 2 ( 2 π 3 + 3 ) = 3 3 + 2 π 6 \begin{aligned}
A&= \frac{1}{2} \int_{\alpha}^{\beta}\left(f_{2}(\theta)^{2}-f_{1}(\theta)^{2}\right) d \theta\\
&= \frac{1}{2} \int_{\pi/6}^{5\pi/6}\left(4\sin^2\theta-1\right) d \theta\\
&= \frac{1}{2} \int_{\pi/6}^{5\pi/6}\left(2-2\cos2\theta-1\right) d \theta\\
&= \frac{1}{2} \int_{\pi/6}^{5\pi/6}\left(1-2\cos2\theta\right) d \theta\\
&= \frac{1}{2} \left(\theta-\sin2\theta\right)\bigg|_{\pi/6}^{5\pi/6}\\
&= \frac{1}{2} \left(\frac{2\pi}{3}+\sqrt{3} \right)\\
&=\frac{3\sqrt{3}+2\pi }{6}
\end{aligned} A = 2 1 ∫ α β ( f 2 ( θ ) 2 − f 1 ( θ ) 2 ) d θ = 2 1 ∫ π /6 5 π /6 ( 4 sin 2 θ − 1 ) d θ = 2 1 ∫ π /6 5 π /6 ( 2 − 2 cos 2 θ − 1 ) d θ = 2 1 ∫ π /6 5 π /6 ( 1 − 2 cos 2 θ ) d θ = 2 1 ( θ − sin 2 θ ) ∣ ∣ π /6 5 π /6 = 2 1 ( 3 2 π + 3 ) = 6 3 3 + 2 π
Comments