Question #118320
Find the area of the region inside the circle r=2sinθ and outside the circle r=1.
1
Expert's answer
2020-06-03T18:28:15-0400

Since the two curves will intersect at

2sinθ=1   θ=π/6,  θ=5π/62\sin \theta =1 \ \ \ \to \theta = \pi /6,\ \ \theta =5\pi/6

Since

12sinθ,     for    π/6x5π/61\geq 2\sin \theta ,\ \ \ \ \ \text{for } \ \ \ \pi/6\leq x\leq 5\pi/6

Then area of the region inside the circle r=2sinθr=2\sinθ and outside the circle r=1, given by

A=12αβ(f2(θ)2f1(θ)2)dθ=12π/65π/6(4sin2θ1)dθ=12π/65π/6(22cos2θ1)dθ=12π/65π/6(12cos2θ)dθ=12(θsin2θ)π/65π/6=12(2π3+3)=33+2π6\begin{aligned} A&= \frac{1}{2} \int_{\alpha}^{\beta}\left(f_{2}(\theta)^{2}-f_{1}(\theta)^{2}\right) d \theta\\ &= \frac{1}{2} \int_{\pi/6}^{5\pi/6}\left(4\sin^2\theta-1\right) d \theta\\ &= \frac{1}{2} \int_{\pi/6}^{5\pi/6}\left(2-2\cos2\theta-1\right) d \theta\\ &= \frac{1}{2} \int_{\pi/6}^{5\pi/6}\left(1-2\cos2\theta\right) d \theta\\ &= \frac{1}{2} \left(\theta-\sin2\theta\right)\bigg|_{\pi/6}^{5\pi/6}\\ &= \frac{1}{2} \left(\frac{2\pi}{3}+\sqrt{3} \right)\\ &=\frac{3\sqrt{3}+2\pi }{6} \end{aligned}






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS