Since the two curves will intersect at
"2\\sin \\theta =1 \\ \\ \\ \\to \\theta = \\pi \/6,\\ \\ \\theta =5\\pi\/6"
Since
"1\\geq 2\\sin \\theta ,\\ \\ \\ \\ \\ \\text{for } \\ \\ \\ \\pi\/6\\leq x\\leq 5\\pi\/6"
Then area of the region inside the circle "r=2\\sin\u03b8" and outside the circle r=1, given by
"\\begin{aligned}\nA&= \\frac{1}{2} \\int_{\\alpha}^{\\beta}\\left(f_{2}(\\theta)^{2}-f_{1}(\\theta)^{2}\\right) d \\theta\\\\\n&= \\frac{1}{2} \\int_{\\pi\/6}^{5\\pi\/6}\\left(4\\sin^2\\theta-1\\right) d \\theta\\\\\n&= \\frac{1}{2} \\int_{\\pi\/6}^{5\\pi\/6}\\left(2-2\\cos2\\theta-1\\right) d \\theta\\\\\n&= \\frac{1}{2} \\int_{\\pi\/6}^{5\\pi\/6}\\left(1-2\\cos2\\theta\\right) d \\theta\\\\\n&= \\frac{1}{2} \\left(\\theta-\\sin2\\theta\\right)\\bigg|_{\\pi\/6}^{5\\pi\/6}\\\\\n&= \\frac{1}{2} \\left(\\frac{2\\pi}{3}+\\sqrt{3} \\right)\\\\\n&=\\frac{3\\sqrt{3}+2\\pi }{6}\n\\end{aligned}"
Comments
Leave a comment