Question #118260

A triangular lamina in the xy plane such that its vertices are (0 0) (0 1) and (1 0). suppose that the density of the lamina is defined by p(x y)=45xy gram per cubic centimetre. find the total mass of the lamina and the center of the lamina


1
Expert's answer
2020-05-26T18:26:33-0400

Mass of lamina:

m=Sp(x,y)dxdy=01dx01x45xydy=4501xdx01xydy=m=\iint_Sp(x,y)dxdy=\int^1_0dx\int^{1-x}_045xydy=45\int^1_0xdx\int^{1-x}_0ydy=

=45201x(1x)2dx=452(x222x33+x44)01==\frac {45}{2}\int^1_0x(1-x)^2dx=\frac {45}{2}(\frac {x^2}{2}-\frac {2x^3}{3}+\frac {x^4}{4})|^1_0=

=452(1223+14)=452642+312=4524=\frac {45}{2}(\frac {1}{2}-\frac {2}{3}+\frac {1}{4})=\frac {45}{2}\cdot\frac{6-4\cdot2+3}{12}=\frac {45}{24} gram


The center of lamina:


x0=Sxp(x,y)dxdym=2401x2dx01xydy=1201x2(1x)2dx=x_0=\frac {\iint_Sxp(x,y)dxdy}{m}=24\intop^1_0x^2dx\intop^{1-x}_0ydy=12\intop^1_0x^2(1-x)^2dx=

=12(x33x42+x55)01=12(1312+15)==12(\frac {x^3}{3}-\frac {x^4}{2}+\frac {x^5}{5})|^1_0=12(\frac {1}{3}-\frac {1}{2}+\frac {1}{5})=

=12(1015+630)=25=12(\frac {10-15+6}{30})=\frac {2}{5}


y0=Syp(x,y)dxdym=2401xdx01xy2dy=801x(1x)3dx=y_0=\frac {\iint_Syp(x,y)dxdy}{m}=24\intop^1_0xdx\intop^{1-x}_0y^2dy=8\intop^1_0x(1-x)^3dx=

=8(x22x3+3x44x55)01=8(121+3415)==8(\frac {x^2}{2}-x^3+\frac {3x^4}{4}-\frac{x^5}{5})|^1_0=8(\frac {1}{2}-1+\frac {3}{4}-\frac {1}{5})=

=8(1020+15420)=25=8(\frac {10-20+15-4}{20})=\frac {2}{5}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
27.05.20, 18:12

Dear Ernestina, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Ernestina
27.05.20, 02:33

THANK YOU VERY MUCH THIS MEANS A LOT! BRILLIANT!

LATEST TUTORIALS
APPROVED BY CLIENTS