Area of the triangle having vertices (0,0), (1,0) and (0,1) is 21 square unit.
The equation of hypotenuse of triangle is y=−x+1 .
Hence the region D is the triangle enclosed by the lines :
x=0,y=0,x+y=1 .
a) The total mass of the lamina is m=∫∫Dρ(x,y)dA.
Given ρ(x,y)=63y.
So, m=∫01∫0−x+163ydydx=∫01[632y2]0−x+1dx=[263−3(1−x)3]01=663.
b) The center of mass (xˉ,yˉ) is given by
xˉ=m1∫∫Dxρ(x,y)dA,yˉ=m1∫∫Dyρ(x,y)dA.
Now,
∫∫Dxρ(x,y)dA=∫01∫0−x+163xydydx=∫01[63x2y2]0−x+1dx=263∫01x(1−x)2dx=263∫01(x3−2x2+x)dx=263[4x4−32x3+2x2]01=2463
and
∫∫Dyρ(x,y)dA=∫01∫0−x+163y2dydx=∫01[633y3]0−x+1dx=363∫01(1−x)3dx=363[(−4)(1−x)4]01=1263
So, xˉ=636×2463=41, and yˉ=636×1263=21 .
Comments
Leave a comment