Answer to Question #118199 in Calculus for Ferdie

Question #118199
A triangular lamina in the Ty-plane such tha
its vertices are (0,0), (0,1) and (1,0). Suppose

that the density function of the lamina is
y) = 63ry g
defined by p(x.
centimetre. Use the information given to
answer the following questions (2 decimal
places):

The total mass of the lamina is
grams.
The moment about the x -axis of the lamina

The Moment about the y -axis of the lamina

The centre of gravity of the lamina ( x, y) is (
1
Expert's answer
2020-05-26T20:04:17-0400

Area of the triangle having vertices (0,0), (1,0) and (0,1) is 12\frac{1}{2} square unit.

The equation of hypotenuse of triangle is y=x+1y = -x+1 .

Hence the region D is the triangle enclosed by the lines :

x=0,y=0,x+y=1x =0, y = 0, x+y = 1 .

a) The total mass of the lamina is m=Dρ(x,y)dAm = \int\int_D \rho (x,y) dA.

Given ρ(x,y)=63y\rho(x,y) = 63 y.

So, m=010x+163ydydx=01[63y22]0x+1dx=[632(1x)33]01=636m = \int_0^1 \int_0^{-x+1} 63 y dydx = \int_0^1 [63 \frac{y^2}{2}]_0^{-x+1} dx = [\frac{63}{2} \frac{(1-x)^3}{-3}]_0^1 = \frac{63}{6}.


b) The center of mass (xˉ,yˉ)(\bar{x},\bar{y}) is given by

xˉ=1mDxρ(x,y)dA,yˉ=1mDyρ(x,y)dA\bar{x} = \frac{1}{m} \int\int_D x\rho(x,y)dA , \bar{y} = \frac{1}{m} \int\int_D y\rho(x,y)dA.

Now,

Dxρ(x,y)dA=010x+163xydydx=01[63xy22]0x+1dx=63201x(1x)2dx=63201(x32x2+x)dx=632[x442x33+x22]01=6324\int\int_D x\rho(x,y)dA = \int_0^1 \int_0^{-x+1} 63x y dydx = \int_0^1 [63x \frac{y^2}{2}]_0^{-x+1} dx \\ = \frac{63}{2} \int_0^1 x(1-x)^2 dx = \frac{63}{2} \int_0^1 (x^3-2x^2 +x) dx = \frac{63}{2} [\frac{x^4}{4} - \frac{2x^3}{3}+\frac{x^2}{2}]_0^1 = \frac{63}{24}

and

Dyρ(x,y)dA=010x+163y2dydx=01[63y33]0x+1dx=63301(1x)3dx=633[(1x)4(4)]01=6312\int\int_D y\rho(x,y)dA = \int_0^1 \int_0^{-x+1} 63 y^2 dydx = \int_0^1 [63 \frac{y^3}{3}]_0^{-x+1} dx \\ = \frac{63}{3} \int_0^1 (1-x)^3 dx = \frac{63}{3} [\frac{(1-x)^4}{(-4)}]_0^1 = \frac{63}{12}

So, xˉ=663×6324=14, and yˉ=663×6312=12\bar{x} = \frac{6}{63} \times\frac{63}{24} = \frac{1}{4}, \ and \ \bar{y} = \frac{6}{63} \times\frac{63}{12} = \frac{1}{2} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment