Area of the triangle having vertices (0,0), (1,0) and (0,1) is "\\frac{1}{2}" square unit.
The equation of hypotenuse of triangle is "y = -x+1" .
Hence the region D is the triangle enclosed by the lines :
"x =0, y = 0, x+y = 1" .
a) The total mass of the lamina is "m = \\int\\int_D \\rho (x,y) dA".
Given "\\rho(x,y) = 63 y".
So, "m = \\int_0^1 \\int_0^{-x+1} 63 y dydx = \\int_0^1 [63 \\frac{y^2}{2}]_0^{-x+1} dx = [\\frac{63}{2} \\frac{(1-x)^3}{-3}]_0^1 = \\frac{63}{6}".
b) The center of mass "(\\bar{x},\\bar{y})" is given by
"\\bar{x} = \\frac{1}{m} \\int\\int_D x\\rho(x,y)dA , \\bar{y} = \\frac{1}{m} \\int\\int_D y\\rho(x,y)dA".
Now,
"\\int\\int_D x\\rho(x,y)dA = \\int_0^1 \\int_0^{-x+1} 63x y dydx = \\int_0^1 [63x \\frac{y^2}{2}]_0^{-x+1} dx \\\\\n= \\frac{63}{2} \\int_0^1 x(1-x)^2 dx = \\frac{63}{2} \\int_0^1 (x^3-2x^2 +x) dx = \\frac{63}{2} [\\frac{x^4}{4} - \\frac{2x^3}{3}+\\frac{x^2}{2}]_0^1 = \\frac{63}{24}"
and
"\\int\\int_D y\\rho(x,y)dA = \\int_0^1 \\int_0^{-x+1} 63 y^2 dydx = \\int_0^1 [63 \\frac{y^3}{3}]_0^{-x+1} dx \\\\\n= \\frac{63}{3} \\int_0^1 (1-x)^3 dx = \\frac{63}{3} [\\frac{(1-x)^4}{(-4)}]_0^1 = \\frac{63}{12}"
So, "\\bar{x} = \\frac{6}{63} \\times\\frac{63}{24} = \\frac{1}{4}, \\ and \\ \\bar{y} = \\frac{6}{63} \\times\\frac{63}{12} = \\frac{1}{2}" .
Comments
Leave a comment