Question #118082
The equation of the tangent plane to h(x,y)=yln(x) at the point (1,5) is
Select one:
a. z=1/5x+1/5y

b. z=x+y


c. z=1/4x+1/4y


d. z=4(x−1)


e. z=5(x+1)


f. z=5(x−1)
1
Expert's answer
2020-05-27T16:29:58-0400

Since h(x,y)=yln(x),we gethx(x,y)=yx andhy(x,y)=ln(x).at(1,5),we obtainhx(1,5)=5 andhy(1,5)=ln(1)=0.As at(1,5)the equation of the tangent plane to h(x,y)isz=hx(1,5)(x1)+hy(1,5)(y5)So,we getz=5(x1).This implies that the correct answer is f.Since \ h(x,y)=yln(x), we \ get \\ h_x(x,y)=\frac{y}{x} \ and \\ h_y(x,y)=\ln(x).\\ at (1,5) , we \ obtain\\ h_x(1,5)= 5\ and \\ h_y(1,5)=\ln(1)=0.\\ As \ at (1,5) \text{the equation of }\\ \text{the tangent plane to }h(x,y) is \\ z=h_x (1,5)(x-1)+h_y(1,5)(y-5)\\ So, we \ get \\ z=5(x-1).\\ \text{This implies that the correct answer is }\\ f.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS