Let us rewrite our equation as z=h(x,y)=ylnx. Point (x0,y0)=(1,5) . We may write the equation of a tangent plane in form (see https://openstax.org/books/calculus-volume-3/pages/4-4-tangent-planes-and-linear-approximations)
z=h(x0,y0)+hx(x0,y0)(x−x0)+hy(x0,y0)(y−y0).
Let us determine the derivatives:
hx(x,y)=y⋅x1,hy(x,y)=1⋅lnx. Therefore, hx(x0,y0)=5⋅11=5,hy(x0,y0)=1⋅ln1=0.
h(x0,y0)=5ln1=0.
So the equation of tangent plane will be
z= 0 + 5(x-1) + 0(y-5) = 5(x-1).
Therefore, the correct answer is f. z=5(x-1).
Comments