We assume all units are in S.I unit.
Let's draw the rough sketch of the given triangular lamina.
Given, density of the triangular lamina
ρ(x,y)=120xy Since, by definition of density,
dAdm=ρ(x,y)⟹m=∫01∫01ρ(x,y)dA=∫01∫01ρ(x,y)dxdy⟹m=∫01∫01120xydxdy⟹m=120∫01(y∫01xdx)dy=30Kg Let's denote the center of gravity by (XG,YG) .
Now,
XG=m1∫01∫01xρ(x,y)dxdy⟹XG=m1∫01∫01x(120xy)dxdy⟹XG=m120∫01∫01x2ydxdy⟹XG=m120∫01x2(∫01ydy)dx⟹XG=m60∫01x2dx⟹XG=m20=32m Similarly,
YG=m1∫01∫01yρ(x,y)dxdy Clearly, if we replace x↔y and vice versa we get exactly similar expression as of XG ,thus we conclude that
YG=32m Therefore center of gravity of the given triangular lamina is
(XG,YG)=(32,32)
Comments