S=12∫0π/3(1+2sinθ)2dθ=12∫0π/3(1+4sinθ+4sin2θ)dθS=\frac{1}{2}\int_{0}^{\pi/3}(1+2\sin\theta)^2d\theta=\frac{1}{2}\int_{0}^{\pi/3}(1+4\sin\theta+4\sin^2\theta)d\thetaS=21∫0π/3(1+2sinθ)2dθ=21∫0π/3(1+4sinθ+4sin2θ)dθ then
S=12(θ−4cosθ+4⋅12(θ−12sin2θ))∣0π/3=12(π/3+2+2(π/3−34)S=\frac{1}{2}(\theta-4\cos\theta+4\sdot\frac{1}{2}(\theta-\frac{1}{2}\sin2\theta))|_{0}^{\pi/3}=\frac{1}{2}(\pi/3+2+2(\pi/3-\frac{\sqrt3}{4})S=21(θ−4cosθ+4⋅21(θ−21sin2θ))∣0π/3=21(π/3+2+2(π/3−43) ))) then
S=12(π+4−32)S=\frac{1}{2}(\pi+\frac{4-\sqrt3}{2})S=21(π+24−3)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments