Question #118319
Find the area enclosed by the curve r(θ)=1+2sinθ and the rays θ=0 and θ=π/3
1
Expert's answer
2020-06-01T19:26:40-0400

S=120π/3(1+2sinθ)2dθ=120π/3(1+4sinθ+4sin2θ)dθS=\frac{1}{2}\int_{0}^{\pi/3}(1+2\sin\theta)^2d\theta=\frac{1}{2}\int_{0}^{\pi/3}(1+4\sin\theta+4\sin^2\theta)d\theta then

S=12(θ4cosθ+412(θ12sin2θ))0π/3=12(π/3+2+2(π/334)S=\frac{1}{2}(\theta-4\cos\theta+4\sdot\frac{1}{2}(\theta-\frac{1}{2}\sin2\theta))|_{0}^{\pi/3}=\frac{1}{2}(\pi/3+2+2(\pi/3-\frac{\sqrt3}{4}) )) then

S=12(π+432)S=\frac{1}{2}(\pi+\frac{4-\sqrt3}{2})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS