The intersection pints of both the curves are given by :
2 s i n θ = 1 θ = π / 6 , 5 π / 6 2 sin\theta = 1 \\
\theta = π/6 , 5π/6 2 s in θ = 1 θ = π /6 , 5 π /6
Let r 1 = 1 , r 2 = 2 s i n θ r_1=1 , r_2=2sin\theta r 1 = 1 , r 2 = 2 s in θ
Area = 1 2 ∫ π / 6 5 π / 6 ( r 2 2 − r 1 2 ) d θ \frac{1}{2}\int_{π/6}^{5π/6} (r_2^2-r_1^2)d\theta\\ 2 1 ∫ π /6 5 π /6 ( r 2 2 − r 1 2 ) d θ
= 1 2 ∫ π / 6 5 π / 6 ( 4 s i n θ 2 − 1 ) d θ = = 1 2 ∫ π / 6 5 π / 6 ( 2 c o s 2 θ + 1 ) d θ = 1 2 ( s i n 2 θ + θ ) ∣ π / 6 5 π / 6 = − − 3 2 + π 3 =\frac{1}{2}\int_{π/6}^{5π/6} (4sin\theta^2-1)d\theta\\
= =\frac{1}{2}\int_{π/6}^{5π/6} (2cos2\theta+1)d\theta\\
=\frac{1}{2} (sin2\theta+\theta)|_{π/6}^{5π/6}\\
= -\frac{-\sqrt3}{2}+\frac{π}{3} = 2 1 ∫ π /6 5 π /6 ( 4 s in θ 2 − 1 ) d θ == 2 1 ∫ π /6 5 π /6 ( 2 cos 2 θ + 1 ) d θ = 2 1 ( s in 2 θ + θ ) ∣ π /6 5 π /6 = − 2 − 3 + 3 π
Comments