The intersection pints of both the curves are given by :
"2 sin\\theta = 1 \\\\\n\\theta = \u03c0\/6 , 5\u03c0\/6"
Let "r_1=1 , r_2=2sin\\theta"
Area = "\\frac{1}{2}\\int_{\u03c0\/6}^{5\u03c0\/6} (r_2^2-r_1^2)d\\theta\\\\"
"=\\frac{1}{2}\\int_{\u03c0\/6}^{5\u03c0\/6} (4sin\\theta^2-1)d\\theta\\\\\n = =\\frac{1}{2}\\int_{\u03c0\/6}^{5\u03c0\/6} (2cos2\\theta+1)d\\theta\\\\\n=\\frac{1}{2} (sin2\\theta+\\theta)|_{\u03c0\/6}^{5\u03c0\/6}\\\\\n= -\\frac{-\\sqrt3}{2}+\\frac{\u03c0}{3}"
Comments
Leave a comment