Since region bounded by
"x:y^2\\to y,\\ \\ \\ \\ \\ \\ \\ \\ y :0\\to 1"
Then
"\\begin{aligned} \\int\\int_{D} y^2xdA&= \\int_{0}^{1}\\int_{y^2}^{y} y^2xdxdy \\\\\n&= \\frac{1}{2}\\int_{0}^{1} y^2x^2\\bigg|_{y^2}^{y} dy \\\\\n&=\\frac{1}{2}\\int_{0}^{1} y^2(y^2-y^4)dy\\\\\n&= \\frac{1}{2}\\int_{0}^{1} (y^4-y^6)dy\\\\\n&= \\frac{1}{2} (\\frac{1}{5}y^5-\\frac{1}{7}y^7)\\bigg|_{0}^{1}\\\\\n&= \\frac{1}{2}( \\frac{1}{5} -\\frac{1}{7})\\\\\n&= \\frac{1}{35}\n \\end{aligned}"
Comments
Leave a comment