Question #119357
Let D={(x,y)∈R^2:y^2<x<y and 0<y<1}. The answer to ∬D 2y^2xdA

is
Select one:
a. 70
b. 1/35
c. -70
d. 2/35
e. 35
1
Expert's answer
2020-06-02T18:25:03-0400

Since region bounded by

x:y2y,        y:01x:y^2\to y,\ \ \ \ \ \ \ \ y :0\to 1

Then

Dy2xdA=01y2yy2xdxdy=1201y2x2y2ydy=1201y2(y2y4)dy=1201(y4y6)dy=12(15y517y7)01=12(1517)=135\begin{aligned} \int\int_{D} y^2xdA&= \int_{0}^{1}\int_{y^2}^{y} y^2xdxdy \\ &= \frac{1}{2}\int_{0}^{1} y^2x^2\bigg|_{y^2}^{y} dy \\ &=\frac{1}{2}\int_{0}^{1} y^2(y^2-y^4)dy\\ &= \frac{1}{2}\int_{0}^{1} (y^4-y^6)dy\\ &= \frac{1}{2} (\frac{1}{5}y^5-\frac{1}{7}y^7)\bigg|_{0}^{1}\\ &= \frac{1}{2}( \frac{1}{5} -\frac{1}{7})\\ &= \frac{1}{35} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS