Using Fubini's theorem, we get:
"\\iint_D(x+y)dA=\\int_0^2dx\\int_{0}^{\\sqrt{4-x^2}}(x+y)dy=\\int_0^2((xy+\\frac{y^2}{2})\\biggr\\rvert_{0}^{\\sqrt{4-x^2}})dx="
"=\\int_0^2(x\\sqrt{4-x^2}+\\frac12(4-x^2)))dx=-\\frac12\\int_0^2\\sqrt{4-x^2}d(4-x^2)+\\int_0^2(2-\\frac12x^2)dx="
"=\\frac83+4-\\frac43=\\frac{16}3"
Answer:d). "\\frac{16}3"
Comments
Leave a comment