Rewrite the region "D" in cylindrical coordinates as,
"D={(r,\\theta,z)|0\\leq r \\leq2,0 \\leq \\theta \\leq2\\pi,0 \\leq z \\leq 5}"
Use cylindrical coordinates to evaluate the triple integral as,
"\\iiint_D zdV=\\intop_0^{2\\pi}\\intop_0^{2}\\intop_0^{5}zrdzdrd\\theta"
"=\\intop_0^{2\\pi}\\intop_0^{2}r[\\frac{z^2}{2}]_0^{5}drd\\theta"
"=\\intop_0^{2\\pi}\\intop_0^{2}r[\\frac{25}{2}]drd\\theta"
"=\\frac{25}{2}\\intop_0^{2\\pi}\\intop_0^{2}rdrd\\theta"
"=\\frac{25}{2}\\intop_0^{2\\pi}[\\frac{r^2}{2}]_0^{2}d\\theta"
"=\\frac{25}{2}\\intop_0^{2\\pi}[\\frac{4}{2}]d\\theta"
"=\\frac{25}{2}(2)\\intop_0^{2\\pi}d\\theta"
"=25[\\theta]_0^{2\\pi}"
"=25(2\\pi)"
"=50\\pi"
Comments
Leave a comment