Answer to Question #119354 in Calculus for Olivia

Question #119354
Let D={(x,y,z)∈R^3:x^2+y^2≤4 and 0≤z≤5}. The answer to ∭D zdV is: Select one:
a. 50
b. 3
c. 50π

d. 2π

e. π^2

f. 2
1
Expert's answer
2020-06-01T18:26:43-0400

Rewrite the region DD in cylindrical coordinates as,


D=(r,θ,z)0r2,0θ2π,0z5D={(r,\theta,z)|0\leq r \leq2,0 \leq \theta \leq2\pi,0 \leq z \leq 5}


Use cylindrical coordinates to evaluate the triple integral as,


DzdV=02π0205zrdzdrdθ\iiint_D zdV=\intop_0^{2\pi}\intop_0^{2}\intop_0^{5}zrdzdrd\theta


=02π02r[z22]05drdθ=\intop_0^{2\pi}\intop_0^{2}r[\frac{z^2}{2}]_0^{5}drd\theta


=02π02r[252]drdθ=\intop_0^{2\pi}\intop_0^{2}r[\frac{25}{2}]drd\theta


=25202π02rdrdθ=\frac{25}{2}\intop_0^{2\pi}\intop_0^{2}rdrd\theta


=25202π[r22]02dθ=\frac{25}{2}\intop_0^{2\pi}[\frac{r^2}{2}]_0^{2}d\theta


=25202π[42]dθ=\frac{25}{2}\intop_0^{2\pi}[\frac{4}{2}]d\theta


=252(2)02πdθ=\frac{25}{2}(2)\intop_0^{2\pi}d\theta


=25[θ]02π=25[\theta]_0^{2\pi}


=25(2π)=25(2\pi)


=50π=50\pi


Therefore, the triple integral is DzdV=50π\iiint_D zdV=50\pi Hence, option (c) is correct.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment