Rewrite the region D in cylindrical coordinates as,
D=(r,θ,z)∣0≤r≤2,0≤θ≤2π,0≤z≤5
Use cylindrical coordinates to evaluate the triple integral as,
∭DzdV=∫02π∫02∫05zrdzdrdθ
=∫02π∫02r[2z2]05drdθ
=∫02π∫02r[225]drdθ
=225∫02π∫02rdrdθ
=225∫02π[2r2]02dθ
=225∫02π[24]dθ
=225(2)∫02πdθ
=25[θ]02π
=25(2π)
=50π
Comments
Leave a comment