∭DYZdv=∫0π∫01∫−12yzdxdydz=∫0π∫−12(∫01yzdy)dxdz=∫0π∫−12(12y2z∣01)dxdz=∫0π∫−12(12z(12−02))dxdz=∫−12(∫0π12zdz)dx=∫−12(12(12z2∣02)dx=∫−1214π2dx=14π2x∣−12=14π2(2−(−1))=34π2=Theansweris(3π24)\begin{aligned} \iiint_{D} Y Z d v &=\int_{0}^{\pi} \int_{0}^{1} \int_{-1}^{2} y z d x d y d z \\ &=\int_{0}^{\pi} \int_{-1}^{2}\left(\int_{0}^{1} y z d y\right) d x d z \\ &=\int_{0}^{\pi} \int_{-1}^{2}\left(\left.\frac{1}{2} y^{2} z\right|_{0} ^{1}\right) d x d z \\ &=\int_{0}^{\pi} \int_{-1}^{2}\left(\frac{1}{2} z\left(1^{2}-0^{2}\right)\right) d x d z \\ &=\int_{-1}^{2}\left(\int_{0}^{\pi} \frac{1}{2} z d z\right) d x \\ &=\int_{-1}^{2}\left(\frac{1}{2}\left(\left.\frac{1}{2} z^{2}\right|_{0} ^{2}\right) d x\right.\\ &=\int_{-1}^{2} \frac{1}{4} \pi^{2} d x \\ &=\left.\frac{1}{4} \pi^{2} x\right|_{-1} ^{2} \\ &=\frac{1}{4} \pi^{2}(2-(-1)) \\ &=\frac{3}{4} \pi^{2} \\ &=\operatorname{The} \operatorname{answer} \operatorname{is} \left(\frac{3 \pi^{2}}{4}\right) \end{aligned}∭DYZdv=∫0π∫01∫−12yzdxdydz=∫0π∫−12(∫01yzdy)dxdz=∫0π∫−12(21y2z∣∣01)dxdz=∫0π∫−12(21z(12−02))dxdz=∫−12(∫0π21zdz)dx=∫−12(21(21z2∣∣02)dx=∫−1241π2dx=41π2x∣∣−12=41π2(2−(−1))=43π2=Theansweris(43π2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments