"\\begin{aligned}\n\\iiint_{D} Y Z d v &=\\int_{0}^{\\pi} \\int_{0}^{1} \\int_{-1}^{2} y z d x d y d z \\\\\n&=\\int_{0}^{\\pi} \\int_{-1}^{2}\\left(\\int_{0}^{1} y z d y\\right) d x d z \\\\\n&=\\int_{0}^{\\pi} \\int_{-1}^{2}\\left(\\left.\\frac{1}{2} y^{2} z\\right|_{0} ^{1}\\right) d x d z \\\\\n&=\\int_{0}^{\\pi} \\int_{-1}^{2}\\left(\\frac{1}{2} z\\left(1^{2}-0^{2}\\right)\\right) d x d z \\\\\n&=\\int_{-1}^{2}\\left(\\int_{0}^{\\pi} \\frac{1}{2} z d z\\right) d x \\\\\n&=\\int_{-1}^{2}\\left(\\frac{1}{2}\\left(\\left.\\frac{1}{2} z^{2}\\right|_{0} ^{2}\\right) d x\\right.\\\\\n&=\\int_{-1}^{2} \\frac{1}{4} \\pi^{2} d x \\\\\n&=\\left.\\frac{1}{4} \\pi^{2} x\\right|_{-1} ^{2} \\\\\n&=\\frac{1}{4} \\pi^{2}(2-(-1)) \\\\\n&=\\frac{3}{4} \\pi^{2} \\\\\n&=\\operatorname{The} \\operatorname{answer} \\operatorname{is} \\left(\\frac{3 \\pi^{2}}{4}\\right)\n\\end{aligned}"
Comments
Leave a comment