(a) Find d y d x \dfrac{dy}{dx} d x d y for each of the following
( i ) y = sin − 1 ( tan ( x 2 ) ) (i)\ y=\sin^{-1}(\tan(x^2)) ( i ) y = sin − 1 ( tan ( x 2 ))
d y d x = 1 1 − tan 2 ( x 2 ) ( 1 cos 2 ( x 2 ) ) ( 2 x ) = 2 x sec 2 ( x 2 ) 1 − tan 2 ( x 2 ) {dy\over dx}={1\over \sqrt{1-\tan^2(x^2)}}({1\over \cos^2(x^2)})(2x)={2x\sec^2(x^2)\over \sqrt{1-\tan^2(x^2)}} d x d y = 1 − tan 2 ( x 2 ) 1 ( cos 2 ( x 2 ) 1 ) ( 2 x ) = 1 − tan 2 ( x 2 ) 2 x sec 2 ( x 2 )
( i i ) x 2 e − 3 y + y 3 = 6 (ii)\ x^2e^{-3y}+y^3=6 ( ii ) x 2 e − 3 y + y 3 = 6
Differentiate both sides with respect to x x x
d d x ( x 2 e − 3 y + y 3 ) = d d x ( 6 ) {d\over dx}(x^2e^{-3y}+y^3)={d\over dx}(6) d x d ( x 2 e − 3 y + y 3 ) = d x d ( 6 ) Use the Chain Rule
2 x e − 3 y − 3 x 2 e − 3 y ⋅ d y d x + 3 y 2 d y d x = 0 2xe^{-3y}-3x^2e^{-3y}\cdot{dy\over dx}+3y^2{dy\over dx}=0 2 x e − 3 y − 3 x 2 e − 3 y ⋅ d x d y + 3 y 2 d x d y = 0 Solve for d y d x {dy\over dx} d x d y
d y d x = 2 x e − 3 y 3 ( x 2 e − 3 y − y 2 ) = 2 x 3 ( x 2 − y 2 e 3 y ) {dy\over dx}={2xe^{-3y}\over 3(x^2e^{-3y}-y^2)}={2x\over 3(x^2-y^2e^{3y})} d x d y = 3 ( x 2 e − 3 y − y 2 ) 2 x e − 3 y = 3 ( x 2 − y 2 e 3 y ) 2 x ( i i i ) y = ( 2 − x ) 1 x (iii)\ y=(2-x)^{1\over x} ( iii ) y = ( 2 − x ) x 1
ln ( y ) = 1 x ln ( 2 − x ) \ln(y)={1\over x}\ln(2-x) ln ( y ) = x 1 ln ( 2 − x ) Differentiate both sides with respect to x . x. x . Use the Chain Rule
1 y ⋅ d y d x = − 1 x 2 ln ( 2 − x ) − 1 x ⋅ 1 2 − x {1\over y}\cdot{dy\over dx}=-{1\over x^2}\ln(2-x)-{1\over x}\cdot{1\over 2-x} y 1 ⋅ d x d y = − x 2 1 ln ( 2 − x ) − x 1 ⋅ 2 − x 1
d y d x = ( − ln ( 2 − x ) x 2 − 1 x ( 2 − x ) ) ( 2 − x ) 1 x {dy\over dx}=\bigg(-{\ln(2-x)\over x^2}-{1\over x(2-x)}\bigg)(2-x)^{1\over x} d x d y = ( − x 2 ln ( 2 − x ) − x ( 2 − x ) 1 ) ( 2 − x ) x 1 ( i v ) y = ∫ 0 x ln ( t 4 + 1 ) d t (iv)\ y=\displaystyle\int_{0}^{\sqrt{x}}\ln(t^4+1)dt ( i v ) y = ∫ 0 x ln ( t 4 + 1 ) d t
Use the Fundamental Theorem of Calculus and Chain Rule
d y d x = ln ( ( x ) 4 + 1 ) d d x ( x ) = ln ( x 2 + 1 ) 2 x {dy\over dx}=\ln((\sqrt{x})^4+1){d\over dx}(\sqrt{x})={\ln(x^2+1)\over 2\sqrt{x}} d x d y = ln (( x ) 4 + 1 ) d x d ( x ) = 2 x ln ( x 2 + 1 )
(b) Let f ( x ) = x e − 2 x . f(x)=xe^{-2x}. f ( x ) = x e − 2 x .
(i) Find the relative extreme point of f f f on R \R R
Domain: ( − ∞ , ∞ ) (-\infin,\infin) ( − ∞ , ∞ )
f ′ ( x ) = e − 2 x − 2 x e − 2 x f'(x)=e^{-2x}-2xe^{-2x} f ′ ( x ) = e − 2 x − 2 x e − 2 x
Find the critical number(s)
f ′ ( x ) = 0 = > e − 2 x − 2 x e − 2 x = 0 = > f'(x)=0=>e^{-2x}-2xe^{-2x}=0=> f ′ ( x ) = 0 => e − 2 x − 2 x e − 2 x = 0 =>
= > e − 2 x ( 1 − 2 x ) = 0 = > x = 1 2 =>e^{-2x}(1-2x)=0=>x={1\over 2} => e − 2 x ( 1 − 2 x ) = 0 => x = 2 1
Critical number: 1 2 {1\over 2} 2 1
f ( 1 2 ) = 1 2 e − 2 ( 1 2 ) = 1 2 e f({1\over 2})={1\over 2}e^{-2({1\over 2})}={1\over 2e} f ( 2 1 ) = 2 1 e − 2 ( 2 1 ) = 2 e 1 First Derivative Test
If x < 1 2 , f ′ ( x ) > 0 , f ( x ) x<{1\over 2},\ f'(x)>0, f(x) x < 2 1 , f ′ ( x ) > 0 , f ( x ) increases.
If x > 1 2 , f ′ ( x ) < 0 , f ( x ) x>{1\over 2},\ f'(x)<0, f(x) x > 2 1 , f ′ ( x ) < 0 , f ( x ) decreases.
The function f ( x ) f(x) f ( x ) has a relative maximum with value of 1 2 e {1\over 2e} 2 e 1 at x = 1 2 . x={1\over 2}. x = 2 1 .
P o i n t ( 1 2 , 1 2 e ) Point\ \bigg(\dfrac{1}{2},\dfrac{1}{2e}\bigg) P o in t ( 2 1 , 2 e 1 )
(ii) Use the result of (b)(i) to find the number of real roots, if any, of the equation f ( x ) = c , f(x)=c, f ( x ) = c , where c c c is a positive constant.
0 < c < 1 2 e , 0<c<\dfrac{1}{2e}, 0 < c < 2 e 1 , two real roots,
c = 1 2 e , c=\dfrac{1}{2e}, c = 2 e 1 , one real root x = 1 2 , x=\dfrac{1}{2}, x = 2 1 ,
c > 1 2 e , c>\dfrac{1}{2e}, c > 2 e 1 , there is no real root.
Comments