Answer to Question #115070 in Calculus for ya

Question #115070
[img]https://upload.cc/i1/2020/05/09/4bXDMg.jpg[/img]


question in picture
1
Expert's answer
2020-05-11T18:25:43-0400

(a) Find "\\dfrac{dy}{dx}" for each of the following

"(i)\\ y=\\sin^{-1}(\\tan(x^2))"


"{dy\\over dx}={1\\over \\sqrt{1-\\tan^2(x^2)}}({1\\over \\cos^2(x^2)})(2x)={2x\\sec^2(x^2)\\over \\sqrt{1-\\tan^2(x^2)}}"

"(ii)\\ x^2e^{-3y}+y^3=6"

Differentiate both sides with respect to "x"


"{d\\over dx}(x^2e^{-3y}+y^3)={d\\over dx}(6)"

Use the Chain Rule


"2xe^{-3y}-3x^2e^{-3y}\\cdot{dy\\over dx}+3y^2{dy\\over dx}=0"

Solve for "{dy\\over dx}"


"{dy\\over dx}={2xe^{-3y}\\over 3(x^2e^{-3y}-y^2)}={2x\\over 3(x^2-y^2e^{3y})}"

"(iii)\\ y=(2-x)^{1\\over x}"


"\\ln(y)={1\\over x}\\ln(2-x)"

Differentiate both sides with respect to "x." Use the Chain Rule


"{1\\over y}\\cdot{dy\\over dx}=-{1\\over x^2}\\ln(2-x)-{1\\over x}\\cdot{1\\over 2-x}"

"{dy\\over dx}=\\bigg(-{\\ln(2-x)\\over x^2}-{1\\over x(2-x)}\\bigg)(2-x)^{1\\over x}"

"(iv)\\ y=\\displaystyle\\int_{0}^{\\sqrt{x}}\\ln(t^4+1)dt"

Use the Fundamental Theorem of Calculus and Chain Rule


"{dy\\over dx}=\\ln((\\sqrt{x})^4+1){d\\over dx}(\\sqrt{x})={\\ln(x^2+1)\\over 2\\sqrt{x}}"

(b) Let "f(x)=xe^{-2x}."

(i) Find the relative extreme point of "f" on "\\R"

Domain: "(-\\infin,\\infin)"

"f'(x)=e^{-2x}-2xe^{-2x}"

Find the critical number(s)

"f'(x)=0=>e^{-2x}-2xe^{-2x}=0=>"

"=>e^{-2x}(1-2x)=0=>x={1\\over 2}"

Critical number: "{1\\over 2}"


"f({1\\over 2})={1\\over 2}e^{-2({1\\over 2})}={1\\over 2e}"

First Derivative Test

If "x<{1\\over 2},\\ f'(x)>0, f(x)" increases.

If "x>{1\\over 2},\\ f'(x)<0, f(x)" decreases.

The function "f(x)" has a relative maximum with value of "{1\\over 2e}" at "x={1\\over 2}."


"Point\\ \\bigg(\\dfrac{1}{2},\\dfrac{1}{2e}\\bigg)"


(ii) Use the result of (b)(i) to find the number of real roots, if any, of the equation "f(x)=c," where "c" is a positive constant.

"0<c<\\dfrac{1}{2e}," two real roots,


"c=\\dfrac{1}{2e}," one real root "x=\\dfrac{1}{2},"


"c>\\dfrac{1}{2e}," there is no real root.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS