(a) Find dxdy for each of the following
(i) y=sin−1(tan(x2))
dxdy=1−tan2(x2)1(cos2(x2)1)(2x)=1−tan2(x2)2xsec2(x2)
(ii) x2e−3y+y3=6
Differentiate both sides with respect to x
dxd(x2e−3y+y3)=dxd(6) Use the Chain Rule
2xe−3y−3x2e−3y⋅dxdy+3y2dxdy=0 Solve for dxdy
dxdy=3(x2e−3y−y2)2xe−3y=3(x2−y2e3y)2x (iii) y=(2−x)x1
ln(y)=x1ln(2−x) Differentiate both sides with respect to x. Use the Chain Rule
y1⋅dxdy=−x21ln(2−x)−x1⋅2−x1
dxdy=(−x2ln(2−x)−x(2−x)1)(2−x)x1 (iv) y=∫0xln(t4+1)dt
Use the Fundamental Theorem of Calculus and Chain Rule
dxdy=ln((x)4+1)dxd(x)=2xln(x2+1)
(b) Let f(x)=xe−2x.
(i) Find the relative extreme point of f on R
Domain: (−∞,∞)
f′(x)=e−2x−2xe−2x
Find the critical number(s)
f′(x)=0=>e−2x−2xe−2x=0=>
=>e−2x(1−2x)=0=>x=21
Critical number: 21
f(21)=21e−2(21)=2e1First Derivative Test
If x<21, f′(x)>0,f(x) increases.
If x>21, f′(x)<0,f(x) decreases.
The function f(x) has a relative maximum with value of 2e1 at x=21.
Point (21,2e1)
(ii) Use the result of (b)(i) to find the number of real roots, if any, of the equation f(x)=c, where c is a positive constant.
0<c<2e1, two real roots,
c=2e1, one real root x=21,
c>2e1, there is no real root.
Comments