Question #115070
[img]https://upload.cc/i1/2020/05/09/4bXDMg.jpg[/img]


question in picture
1
Expert's answer
2020-05-11T18:25:43-0400

(a) Find dydx\dfrac{dy}{dx} for each of the following

(i) y=sin1(tan(x2))(i)\ y=\sin^{-1}(\tan(x^2))


dydx=11tan2(x2)(1cos2(x2))(2x)=2xsec2(x2)1tan2(x2){dy\over dx}={1\over \sqrt{1-\tan^2(x^2)}}({1\over \cos^2(x^2)})(2x)={2x\sec^2(x^2)\over \sqrt{1-\tan^2(x^2)}}

(ii) x2e3y+y3=6(ii)\ x^2e^{-3y}+y^3=6

Differentiate both sides with respect to xx


ddx(x2e3y+y3)=ddx(6){d\over dx}(x^2e^{-3y}+y^3)={d\over dx}(6)

Use the Chain Rule


2xe3y3x2e3ydydx+3y2dydx=02xe^{-3y}-3x^2e^{-3y}\cdot{dy\over dx}+3y^2{dy\over dx}=0

Solve for dydx{dy\over dx}


dydx=2xe3y3(x2e3yy2)=2x3(x2y2e3y){dy\over dx}={2xe^{-3y}\over 3(x^2e^{-3y}-y^2)}={2x\over 3(x^2-y^2e^{3y})}

(iii) y=(2x)1x(iii)\ y=(2-x)^{1\over x}


ln(y)=1xln(2x)\ln(y)={1\over x}\ln(2-x)

Differentiate both sides with respect to x.x. Use the Chain Rule


1ydydx=1x2ln(2x)1x12x{1\over y}\cdot{dy\over dx}=-{1\over x^2}\ln(2-x)-{1\over x}\cdot{1\over 2-x}

dydx=(ln(2x)x21x(2x))(2x)1x{dy\over dx}=\bigg(-{\ln(2-x)\over x^2}-{1\over x(2-x)}\bigg)(2-x)^{1\over x}

(iv) y=0xln(t4+1)dt(iv)\ y=\displaystyle\int_{0}^{\sqrt{x}}\ln(t^4+1)dt

Use the Fundamental Theorem of Calculus and Chain Rule


dydx=ln((x)4+1)ddx(x)=ln(x2+1)2x{dy\over dx}=\ln((\sqrt{x})^4+1){d\over dx}(\sqrt{x})={\ln(x^2+1)\over 2\sqrt{x}}

(b) Let f(x)=xe2x.f(x)=xe^{-2x}.

(i) Find the relative extreme point of ff on R\R

Domain: (,)(-\infin,\infin)

f(x)=e2x2xe2xf'(x)=e^{-2x}-2xe^{-2x}

Find the critical number(s)

f(x)=0=>e2x2xe2x=0=>f'(x)=0=>e^{-2x}-2xe^{-2x}=0=>

=>e2x(12x)=0=>x=12=>e^{-2x}(1-2x)=0=>x={1\over 2}

Critical number: 12{1\over 2}


f(12)=12e2(12)=12ef({1\over 2})={1\over 2}e^{-2({1\over 2})}={1\over 2e}

First Derivative Test

If x<12, f(x)>0,f(x)x<{1\over 2},\ f'(x)>0, f(x) increases.

If x>12, f(x)<0,f(x)x>{1\over 2},\ f'(x)<0, f(x) decreases.

The function f(x)f(x) has a relative maximum with value of 12e{1\over 2e} at x=12.x={1\over 2}.


Point (12,12e)Point\ \bigg(\dfrac{1}{2},\dfrac{1}{2e}\bigg)


(ii) Use the result of (b)(i) to find the number of real roots, if any, of the equation f(x)=c,f(x)=c, where cc is a positive constant.

0<c<12e,0<c<\dfrac{1}{2e}, two real roots,


c=12e,c=\dfrac{1}{2e}, one real root x=12,x=\dfrac{1}{2},


c>12e,c>\dfrac{1}{2e}, there is no real root.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS