ByTaylor′stheorem,weknowthatf(x)=f(a)+(x−a)f′(a)+2!(x−a)2f′′(a)+......
So,heref(x)=e2x and a=1.
e2x=f(1)+(x−1)f′(1)+2!(x−1)2f′′(1)+3!(x−1)3f′′′(1)+.......
f(1)= e2,f′(1)=2e2,f′′(1)=4e2,f′′′(1)=8e2
Putting the above values in the expansion of e2x , we get
e2x=e2+2(x−1)e2+2(x−1)2e2+34(x−1)3e2 (expansion is done up to 4 terms)
Therefore, expansion of e2x in powers of (x−1) up to 4 terms is
e2x=e2+2(x−1)e2+2(x−1)2e2+34(x−1)3e2.
Comments