Question #114643
Expand e^2x in powers of (x-1), up to four terms
1
Expert's answer
2020-05-18T11:31:55-0400

ByTaylorstheorem,weknowthatf(x)=By\, Taylor's\, theorem,\, we\, know\, that \, f(x) =f(a)+(xa)f(a)+(xa)22!f(a)+......f(a)+(x-a)f'(a)+\frac{(x-a)^2}{2!}f''(a)+......

So,heref(x)=e2xSo, here f(x) =e^{2x} and a=1.a=1.

e2x=f(1)+(x1)f(1)+(x1)22!f(1)+(x1)33!f(1)+.......e^{2x} =f(1)+(x-1)f'(1) +\frac{(x-1)^2}{2!}f''(1)+\frac{(x-1)^3}{3!}f'''(1)+.......

f(1)=f(1)= e2,f(1)=2e2,f(1)=4e2,f(1)=8e2e^2 , f'(1)=2e^2, f''(1)=4e^2, f'''(1)=8e^2

Putting the above values in the expansion of e2xe^{2x} , we get

e2x=e2+2(x1)e2+2(x1)2e2+43(x1)3e2e^{2x} = e^2+2(x-1)e^2+2(x-1)^2e^2+\frac{4}{3}(x-1)^3e^2 (expansion is done up to 4 terms)

Therefore, expansion of e2xe^{2x} in powers of (x1)(x-1) up to 4 terms is

e2x=e2+2(x1)e2+2(x1)2e2+43(x1)3e2.e^{2x} = e^2+2(x-1)e^2+2(x-1)^2e^2+\frac{4}{3}(x-1)^3e^2 .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS