"By\\, Taylor's\\, theorem,\\, we\\, know\\, that \\,\nf(x) =""f(a)+(x-a)f'(a)+\\frac{(x-a)^2}{2!}f''(a)+......"
"So, here f(x) =e^{2x}" and "a=1."
"e^{2x} =f(1)+(x-1)f'(1) +\\frac{(x-1)^2}{2!}f''(1)+\\frac{(x-1)^3}{3!}f'''(1)+......."
"f(1)=" "e^2 , f'(1)=2e^2, f''(1)=4e^2, f'''(1)=8e^2"
Putting the above values in the expansion of "e^{2x}" , we get
"e^{2x} = e^2+2(x-1)e^2+2(x-1)^2e^2+\\frac{4}{3}(x-1)^3e^2" (expansion is done up to 4 terms)
Therefore, expansion of "e^{2x}" in powers of "(x-1)" up to 4 terms is
"e^{2x} = e^2+2(x-1)e^2+2(x-1)^2e^2+\\frac{4}{3}(x-1)^3e^2 ."
Comments
Leave a comment