Given
f(x)=x4−8x2+16f(x)=x^4-8x^2+16f(x)=x4−8x2+16
Since
f′(x)=4x3−16xf′′(x)=12x2−16f'(x) = 4x^3-16x\\ f''(x)= 12x^2-16f′(x)=4x3−16xf′′(x)=12x2−16
Solve
f′′(x)=0f''(x)=0f′′(x)=0
we get
x=233, x=−233x=\frac{2\sqrt{3}}{3},\ \ \ \ \:x=-\frac{2\sqrt{3}}{3}x=323, x=−323
Now , we check the sign of f′′(x)f''(x)f′′(x) , since
f′′(−2)>0, f′′(0)<0, f′′(2)>0f''(-2)>0,\ \ \ f''(0)<0,\ \ f''(2)>0f′′(−2)>0, f′′(0)<0, f′′(2)>0
Then f(x)f(x)f(x) is concave up on (−∞,−23/3)∪(23/3,∞)(-\infty , -2\sqrt{3}/3)\cup (2\sqrt{3}/3,\infty)(−∞,−23/3)∪(23/3,∞) and
concave down on (−23/3,23/3)(-2\sqrt{3}/3,2\sqrt{3}/3)(−23/3,23/3)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments