Given
"f(x)=x^4-8x^2+16"
Since
"f'(x) = 4x^3-16x\\\\\nf''(x)= 12x^2-16"
Solve
"f''(x)=0"
we get
"x=\\frac{2\\sqrt{3}}{3},\\ \\ \\ \\ \\:x=-\\frac{2\\sqrt{3}}{3}"
Now , we check the sign of "f''(x)" , since
"f''(-2)>0,\\ \\ \\ f''(0)<0,\\ \\ f''(2)>0"
Then "f(x)" is concave up on "(-\\infty , -2\\sqrt{3}\/3)\\cup (2\\sqrt{3}\/3,\\infty)" and
concave down on "(-2\\sqrt{3}\/3,2\\sqrt{3}\/3)"
Comments
Leave a comment