Area between two curves f and g is given by:
A = ∫ab(f(y)−g(y))dy\int^b_a (f(y) -g(y)) dy∫ab(f(y)−g(y))dy where a<y<b
Here,
g = y2=ax
x=y2ax= \frac{y^2}{a}x=ay2
f = ay2=x3
x=a1/3y2/3x = a^{1/3} y^{2/3}x=a1/3y2/3
A = ∫−aa(−y2a+a1/3y2/3)dy\int^a_{-a} (-\frac{y^2}{a} +a^{1/3} y^{2/3}) dy∫−aa(−ay2+a1/3y2/3)dy
=∫−aa−y2ady+∫−aaa1/3y2/3dy=\int^a_{-a} -\frac{y^2}{a} dy + \int^a_{-a} a^{1/3} y^{2/3} dy=∫−aa−ay2dy+∫−aaa1/3y2/3dy
=−y33a∣−aa+3y5/3a1/35∣−aa=\left. \frac{-y^3}{3a} \right|^{a}_{-a} + \left. \frac{3y^{5/3}a^{1/3}}{5} \right|^{a}_{-a}=3a−y3∣∣−aa+53y5/3a1/3∣∣−aa
=−a23+3a25−a23+3a25-\frac{a^2}{3} + \frac{3a^2}{5} -\frac{a^2}{3} + \frac{3a^2}{5}−3a2+53a2−3a2+53a2
= −2a23+6a25-\frac{2a^2}{3} + \frac{6a^2}{5}−32a2+56a2
= −10a2+18a215\frac{-10a^2+18a^2}{15}15−10a2+18a2
=8a215\frac{8a^2}{15}158a2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments