Area between two curves f and g is given by:
A = "\\int^b_a (f(y) -g(y)) dy" where a<y<b
Here,
g = y2=ax
"x= \\frac{y^2}{a}"
f = ay2=x3
"x = a^{1\/3} y^{2\/3}"
A = "\\int^a_{-a} (-\\frac{y^2}{a} +a^{1\/3} y^{2\/3}) dy"
"=\\int^a_{-a} -\\frac{y^2}{a} dy + \\int^a_{-a} a^{1\/3} y^{2\/3} dy"
"=\\left. \\frac{-y^3}{3a} \\right|^{a}_{-a} + \\left. \\frac{3y^{5\/3}a^{1\/3}}{5} \\right|^{a}_{-a}"
="-\\frac{a^2}{3} + \\frac{3a^2}{5} -\\frac{a^2}{3} + \\frac{3a^2}{5}"
= "-\\frac{2a^2}{3} + \\frac{6a^2}{5}"
= "\\frac{-10a^2+18a^2}{15}"
="\\frac{8a^2}{15}"
Comments
Leave a comment