1) Domain, vertical asymptotes and intercepts.
The domain is (−∞,−4)∪(−4,4)∪(4,∞), since x cannot be equal to ±4.
Determine the one-sided limits at points -4 and 4 :
"\\lim_{ x\u2192\u22124^+} \\frac{2x^2\u22128}{x^2 \u221216} =\u2212\u221e \\\\\n\\lim_{ x\u2192\u22124^-} \\frac{2x^2\u22128}{x^2 \u221216} =\u221e \\\\\n\\lim_{ x\u21924^+} \\frac{2x^2\u22128}{x^2 \u221216} =\u221e \\\\\n\\lim_{ x\u21924^-} \\frac{2x^2\u22128}{x^2 \u221216} =\u2212\u221e"
Therefore, x=−4 and x=4 are the vertical asymptotes.
Determine the x-intercept(s):
"y=0 \\\\ \n\\frac{2x^2 \u22128}{x^2-16} =0 \\\\\n\\implies 2x^2 \u22128=0 \\implies\n2(x^2 \u22124) = 0 \\\\\n\\implies(x\u22122)(x+2)=0\n\\implies x=\u22122, x=2" .
So, the x-intercepts are (-2,0) and (2,0).
Determine the y-intercept(s):
Now x=0 so y = 1/2, so the y-intercept is (0,1/2).
2) Symmetry
Let y = f(x).
And f(-x)=f(x).
So given curve is y-axis.
3) Monotonicity
"y'=(\\frac{2x^2-8}{x^2-16})' = \\frac{4x(x^2-16) - 2x(2x^2-8)}{(x^2-16)^2} = \\frac{-48x}{(x^2-16)^2} \\\\ y'=0 \\text{ when } x=0"
If x<0, then y>0. If x>0, then y′<0. Therefore, when x<0 the function is increasing, when x>0 the function is decreasing, and x=0 is the maximum.
4) Convex
"y'' = (\\frac{2x^2-8}{x^2-16})'' = (\\frac{-48x}{(x^2-16)^2})' = \\frac{-48(x^2-16)^2 + 48x\\cdot2(x^2-16)\\cdot(2x)}{(x^2-16)^4} \\\\ \\quad = \\frac{48(3x^2+16)}{(x^2-16)^3}"
The second derivative has no roots, but it has the points, when the second derivative does not exist (x=−4,x=4).
If x<−4, then y′′>0. If −4<x<4, then ′′<0. If x>4, then y′′>0. Therefore, when x<−4 and x>4 the function concave upward, and when −4<x<4 the function concave downward.
Draw a graph, given curve is green colour:
Comments
Leave a comment