Question #114625
Prove that cos x graterthan or equal to 1(-x^2/2)for all x in the interval [0, 2pi]
1
Expert's answer
2020-05-11T05:08:34-0400

We apply the mean value theorem tof(x)=x22+cosx on the interval [0,2π].Show that cosx>1x22.We know that df(x)dx=xsinx,for x>0.By the MVT,if x>0,thenf(x)f(0)=(x0)f(c) for some c>0.f(x)f(0)=(x0)f(c)=x(csinc).Let 𝑔(x)=xsinx.We can show that𝑔(x)=1cosxwhich is always greater than 0 due to bounded nature of cosx.As 𝑔(0)=0 and it is an increasing function,𝑔(x)>0 x>0,thus 𝑔(x)>0 x>0.So,f(x)f(0)>0 x>0 as x>0 andcsinc>0 c>0 (0<c<x).As f(x)>f(0)=1,then x22+cosx>1cosx>1x22 for x[0,2π]We \ apply \ the \ mean \ value \ theorem \ to\\ f(x)=\frac{x^2}{2} +cos x \ on \ the \ interval \ [0, 2\pi].\\ Show \ that \ cos x > 1 - \frac{x^2}{2}.\\ We \ know \ that \ \frac{df(x)}{dx} = x - sin x, for \ x>0. \\ By \ the \ MVT, if \ x > 0, then \\ f(x) - f(0) = (x - 0)f\rq(c) \ for \ some \ c > 0. \\ f(x) - f(0) = (x -0)f\rq(c) = x(c - sin c). \\ Let \ 𝑔(x)= x − sin x .\\ We \ can \ show \ that \\ 𝑔\rq(x) = 1-cos x \\ which \ is \ always \ greater \ than \ 0 \ due \ to \ bounded \ nature \ of \ cos x. \\ As \ 𝑔(0) = 0 \ and \ it \ is \ an \ increasing \ function, \\ { 𝑔\rq(x) > 0 \ ∀ x > 0 } , thus \ 𝑔(x) > 0 \ ∀ x > 0. \\ So, f(x) - f(0) > 0 \ ∀ x > 0 \ as \ x > 0 \ and \\ c - sin c > 0 \ ∀ c > 0 \ (0 < c < x). \\ As \ f(x) > f(0) = 1, then \ \frac{x^2}{2 }+ cos x > 1 \\ cos x > 1 - \frac{x^2}{2} \ for \ x∈[0,2\pi]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS