f(x)=3x2 when x≤1. ⟹f(1)=3
f(x)=ax+b when x>1⟹limx→1+f(x)=a+b
A differentiable function is also continuous. The function f(x) is continuous at x=1 iff limx→1−f(x)=limx→1+f(x)=f(1), hence a+b−3=0.
Now,
f′(1−)=limh→0−hf(1−h)−f(1)=limh→0−h3(1−h)2−3==limh→0−h3h2−6h=limh→06−3h=6
f′(1+)=limh→0hf(1+h)−f(1)=limh→0ha(1+h)+b−3==limh→0ha+b−3+ah=a
The functuon is differentiable iff f′(1−)=f′(1+)⟹a=6.
From a=6 and a+b−3=0 it follows that a=6,b=−3 .
Comments
Leave a comment