Answer to Question #114620 in Calculus for ANJU JAYACHANDRAN

Question #114620
Let f(x)={3x^2, x lessthan or equal to1;ax+b, x graterthan 1
Find the value of a and b so that f is differentiable at x=1.
1
Expert's answer
2020-05-09T11:42:58-0400

f(x)=3x2f(x) = 3 x^2 when x1.x \leq 1.     f(1)=3\implies f(1)=3

f(x)=ax+bf(x)=ax+b when x>1    limx1+f(x)=a+bx>1 \implies \lim_{x \to 1+}f(x)=a+b

A differentiable function is also continuous. The function f(x)f(x) is continuous at x=1x=1 iff limx1f(x)=limx1+f(x)=f(1),\lim_{x \to 1-}f(x)=\lim_{x \to 1+}f(x)=f(1), hence a+b3=0.a+b-3=0.

Now,

f(1)=limh0f(1h)f(1)h=limh03(1h)23h==limh03h26hh=limh063h=6f'(1^-)= \lim_{h \to 0} \frac{f(1-h)-f(1)}{-h} = \lim_{h \to 0} \frac{3(1-h)^2-3}{-h} =\\= \lim_{h \to 0} \frac{3h^2-6h}{-h} = \lim_{h \to 0} 6-3h = 6

f(1+)=limh0f(1+h)f(1)h=limh0a(1+h)+b3h==limh0a+b3+ahh=af'(1^+) = \lim_{h \to 0} \frac{f(1+h)-f(1)}{h} = \lim_{h \to 0} \frac{a(1+h)+b-3}{h} =\\= \lim_{h \to 0} \frac{a+b-3+ah}{h} = a

The functuon is differentiable iff f(1)=f(1+)    a=6f'(1^-)=f'(1^+) \implies a=6.

From a=6a=6 and a+b3=0a+b-3=0 it follows that a=6,b=3a=6, b=-3 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment