"f(x) = 3 x^2" when "x \\leq 1." "\\implies f(1)=3"
"f(x)=ax+b" when "x>1 \\implies \\lim_{x \\to 1+}f(x)=a+b"
A differentiable function is also continuous. The function "f(x)" is continuous at "x=1" iff "\\lim_{x \\to 1-}f(x)=\\lim_{x \\to 1+}f(x)=f(1)," hence "a+b-3=0."
Now,
"f'(1^-)= \\lim_{h \\to 0} \\frac{f(1-h)-f(1)}{-h} = \\lim_{h \\to 0} \\frac{3(1-h)^2-3}{-h} =\\\\= \\lim_{h \\to 0} \\frac{3h^2-6h}{-h} = \\lim_{h \\to 0} 6-3h = 6"
"f'(1^+) = \\lim_{h \\to 0} \\frac{f(1+h)-f(1)}{h} = \\lim_{h \\to 0} \\frac{a(1+h)+b-3}{h} =\\\\= \\lim_{h \\to 0} \\frac{a+b-3+ah}{h} = a"
The functuon is differentiable iff "f'(1^-)=f'(1^+) \\implies a=6".
From "a=6" and "a+b-3=0" it follows that "a=6, b=-3" .
Comments
Leave a comment