Given function is continuous on R.
So, function f(x) is continuous at x=2 and x=3 also.
So, f(2- ) = f(2+ ) and f(3- )=f(3+ ).
Now by continuity of f(x) at x=2, we get
lim x → 2 − f ( x ) = lim x → 2 x 2 − 4 x − 2 = lim x → 2 ( x + 2 ) = 4. lim x → 2 + f ( x ) = ( 2 a ) 2 − 2 b + 3. ⟹ 4 a 2 − 2 b + 3 = 4 ⟹ 4 a 2 − 2 b − 1 = 0. \lim_{x \to 2^-} f(x) = \lim_{x \to 2} \frac{x^2-4}{x-2} = \lim_{x \to 2} (x+2) = 4. \\
\lim_{x \to 2^+} f(x) = (2a)^2-2b+3.\\
\implies 4a^2-2b+3 = 4 \\
\implies 4a^2-2b -1= 0. lim x → 2 − f ( x ) = lim x → 2 x − 2 x 2 − 4 = lim x → 2 ( x + 2 ) = 4. lim x → 2 + f ( x ) = ( 2 a ) 2 − 2 b + 3. ⟹ 4 a 2 − 2 b + 3 = 4 ⟹ 4 a 2 − 2 b − 1 = 0.
Similarly by continuity of f(x) at x=3, we have
f ( 3 − ) = f ( 3 + ) ⟹ 9 a 2 − 3 b + 3 = 6 − a + b ⟹ 9 a 2 + a − 4 b − 3 = 0. f(3^-)=f(3^+)\\
\implies
9a^2-3b+3=6-a+b \\
\implies 9a^2+a-4b-3=0. f ( 3 − ) = f ( 3 + ) ⟹ 9 a 2 − 3 b + 3 = 6 − a + b ⟹ 9 a 2 + a − 4 b − 3 = 0.
So we get a 2 + a − 1 = 0. ⟹ a = − 1 ± 5 2 . a^2+a-1=0.
\implies a=\frac{-1\pm\sqrt{5}}{2}. a 2 + a − 1 = 0. ⟹ a = 2 − 1 ± 5 .
And
b = ( 4 a 2 − 1 ) / 2 = ( 4 − 4 a − 1 ) / 2 = ( 3 − 4 a ) / 2. b = (4a^2-1)/2 = (4-4a-1)/2 = (3-4a)/2. b = ( 4 a 2 − 1 ) /2 = ( 4 − 4 a − 1 ) /2 = ( 3 − 4 a ) /2.
Comments