The curve y = "\\ x^{2}" from x = 1
x=1 and x = 2
x=2 about the y axis
We know that x = 1 to x = 2 , which is analogous from y = 1 to y = 4.
Area of the surface is
"A = 2\\times \\pi \\int_{a}^{b} g(y)\\sqrt{1+(g'(y)^{2})}dy"
"g(y) = \\sqrt{y}"
"g'(y) = \\frac {1}{(2\\times\\sqrt{y})}"
"A = 2\\times \\pi \\int_{1}^{4} \\sqrt {y} \\sqrt{1+(\\frac{1}{(2\\times\\sqrt{y})})^{2}}dy"
"A = 2\\times \\pi \\int_{1}^{4} \\sqrt{y(1+\\frac{1}{4y})}dy"
"A = 2\\times \\pi \\int_{1}^{4} \\sqrt{y+(\\frac{1}{4})}dy"
Let,
"u = y + \\frac {1}{4}"
"du = dy"
"y = 1 , u = \\frac {5} {4}"
"y = 1 , u = \\frac {17} {4}\n\n\u200b"
"A = 2\\times \\pi \\int_{\\frac{5}{4}}^{\\frac{17}{4}} u^ { \\frac {1} {2} } dy"
"A= 2 \\times \\pi [\\frac{2}{3} (u^\\frac {3} {2}) ]|_{\\frac{5}{4}} ^{ \\frac{17}{4}}"
"A= \\frac{4 \\times \\pi}{3} [(\\frac{17}{4})^\\frac {3} {2} - (\\frac{5}{4})^\\frac {3} {2}]"
"A= 30.85 sq.unit"
Comments
Leave a comment