Question #114610
Find the area of the surface that is generated by revolving the portion of the curve y=x^2 between x=1 and x=2 about the y-axis.
1
Expert's answer
2020-05-11T11:39:56-0400

The curve y =  x2\ x^{2} from x = 1

x=1 and x = 2

x=2 about the y axis


We know that x = 1 to x = 2 , which is analogous from y = 1 to y = 4.

Area of the surface is

A=2×πabg(y)1+(g(y)2)dyA = 2\times \pi \int_{a}^{b} g(y)\sqrt{1+(g'(y)^{2})}dy


g(y)=yg(y) = \sqrt{y}

g(y)=1(2×y)g'(y) = \frac {1}{(2\times\sqrt{y})}

A=2×π14y1+(1(2×y))2dyA = 2\times \pi \int_{1}^{4} \sqrt {y} \sqrt{1+(\frac{1}{(2\times\sqrt{y})})^{2}}dy

A=2×π14y(1+14y)dyA = 2\times \pi \int_{1}^{4} \sqrt{y(1+\frac{1}{4y})}dy

A=2×π14y+(14)dyA = 2\times \pi \int_{1}^{4} \sqrt{y+(\frac{1}{4})}dy

Let,

u=y+14u = y + \frac {1}{4}


du=dydu = dy


y=1,u=54y = 1 , u = \frac {5} {4}


y=1,u=174y = 1 , u = \frac {17} {4} ​


A=2×π54174u12dyA = 2\times \pi \int_{\frac{5}{4}}^{\frac{17}{4}} u^ { \frac {1} {2} } dy


A=2×π[23(u32)]54174A= 2 \times \pi [\frac{2}{3} (u^\frac {3} {2}) ]|_{\frac{5}{4}} ^{ \frac{17}{4}}


A=4×π3[(174)32(54)32]A= \frac{4 \times \pi}{3} [(\frac{17}{4})^\frac {3} {2} - (\frac{5}{4})^\frac {3} {2}]


A=30.85sq.unitA= 30.85 sq.unit


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS