The curve y = x 2 \ x^{2} x 2 from x = 1
x=1 and x = 2
x=2 about the y axis
We know that x = 1 to x = 2 , which is analogous from y = 1 to y = 4.
Area of the surface is
A = 2 × π ∫ a b g ( y ) 1 + ( g ′ ( y ) 2 ) d y A = 2\times \pi \int_{a}^{b} g(y)\sqrt{1+(g'(y)^{2})}dy A = 2 × π ∫ a b g ( y ) 1 + ( g ′ ( y ) 2 ) d y
g ( y ) = y g(y) = \sqrt{y} g ( y ) = y
g ′ ( y ) = 1 ( 2 × y ) g'(y) = \frac {1}{(2\times\sqrt{y})} g ′ ( y ) = ( 2 × y ) 1
A = 2 × π ∫ 1 4 y 1 + ( 1 ( 2 × y ) ) 2 d y A = 2\times \pi \int_{1}^{4} \sqrt {y} \sqrt{1+(\frac{1}{(2\times\sqrt{y})})^{2}}dy A = 2 × π ∫ 1 4 y 1 + ( ( 2 × y ) 1 ) 2 d y
A = 2 × π ∫ 1 4 y ( 1 + 1 4 y ) d y A = 2\times \pi \int_{1}^{4} \sqrt{y(1+\frac{1}{4y})}dy A = 2 × π ∫ 1 4 y ( 1 + 4 y 1 ) d y
A = 2 × π ∫ 1 4 y + ( 1 4 ) d y A = 2\times \pi \int_{1}^{4} \sqrt{y+(\frac{1}{4})}dy A = 2 × π ∫ 1 4 y + ( 4 1 ) d y
Let,
u = y + 1 4 u = y + \frac {1}{4} u = y + 4 1
d u = d y du = dy d u = d y
y = 1 , u = 5 4 y = 1 , u = \frac {5} {4} y = 1 , u = 4 5
y = 1 , u = 17 4 y = 1 , u = \frac {17} {4}
y = 1 , u = 4 17
A = 2 × π ∫ 5 4 17 4 u 1 2 d y A = 2\times \pi \int_{\frac{5}{4}}^{\frac{17}{4}} u^ { \frac {1} {2} } dy A = 2 × π ∫ 4 5 4 17 u 2 1 d y
A = 2 × π [ 2 3 ( u 3 2 ) ] ∣ 5 4 17 4 A= 2 \times \pi [\frac{2}{3} (u^\frac {3} {2}) ]|_{\frac{5}{4}} ^{ \frac{17}{4}} A = 2 × π [ 3 2 ( u 2 3 )] ∣ 4 5 4 17
A = 4 × π 3 [ ( 17 4 ) 3 2 − ( 5 4 ) 3 2 ] A= \frac{4 \times \pi}{3} [(\frac{17}{4})^\frac {3} {2} - (\frac{5}{4})^\frac {3} {2}] A = 3 4 × π [( 4 17 ) 2 3 − ( 4 5 ) 2 3 ]
A = 30.85 s q . u n i t A= 30.85 sq.unit A = 30.85 s q . u ni t
Comments