Given 2y3t+t3y=1 and dxdt=cost1.
Let be F(y;t)=2y3t+t3y−1
So dtdy=−dydFdtdF . (1)
dtdF=2y3t∗3lny+3yt3y−1
dtdF=6y3tlny+3yt3y−1 (2)
dydF=2∗3ty3t−1+3t3ylnt
dydF=6ty3t−1+3t3ylnt (3)
Substitute (2) and (3) into (1).
dtdy=−6ty3t−1+3t3ylnt6y3tlny+3yt3y−1 (4)
Let's find dxdy:
dxdy=dtdy∗dxdt, (5)
where dxdt=cost1. (6)
Substitute (4) and (6) into (5):
dxdy=−6ty3t−1+3t3ylnt6y3tlny+3yt3y−1∗cost1
dxdy=−cost(6ty3t−1+3t3ylnt)6y3tlny+3yt3y−1 (7)
Answer: dxdy=−cost(6ty3t−1+3t3ylnt)6y3tlny+3yt3y−1.
Comments