Question #114627
Find dy/dx if 2y^3t+t^3y=1 and dt/dx=1/cost
1
Expert's answer
2020-05-11T17:55:22-0400

Given 2y3t+t3y=12y^{3t}+t^{3y}=1 and dtdx=1cost\frac{dt}{dx}=\frac{1}{cost}.

Let be F(y;t)=2y3t+t3y1F(y;t)=2y^{3t}+t^{3y}-1

So dydt=dFdtdFdy\frac{dy}{dt}=-\frac{\frac{dF}{dt}}{\frac{dF}{dy}} . (1)

dFdt=2y3t3lny+3yt3y1\frac{dF}{dt}=2y^{3t}*3lny+3yt^{3y-1}

dFdt=6y3tlny+3yt3y1\frac{dF}{dt}=6y^{3t}lny+3yt^{3y-1} (2)


dFdy=23ty3t1+3t3ylnt\frac{dF}{dy}=2*3ty^{3t-1}+3t^{3y}lnt

dFdy=6ty3t1+3t3ylnt\frac{dF}{dy}=6ty^{3t-1}+3t^{3y}lnt (3)

Substitute (2) and (3) into (1).

dydt=6y3tlny+3yt3y16ty3t1+3t3ylnt\frac{dy}{dt}=-\frac{6y^{3t}lny+3yt^{3y-1}}{6ty^{3t-1}+3t^{3y}lnt} (4)


Let's find dydx\frac {dy}{dx}:

dydx=dydtdtdx\frac {dy}{dx}=\frac{dy}{dt}*\frac{dt}{dx}, (5)

where dtdx=1cost\frac{dt}{dx}=\frac{1}{cost}. (6)


Substitute (4) and (6) into (5):

dydx=6y3tlny+3yt3y16ty3t1+3t3ylnt1cost\frac {dy}{dx}=-\frac{6y^{3t}lny+3yt^{3y-1}}{6ty^{3t-1}+3t^{3y}lnt}*\frac{1}{cost}

dydx=6y3tlny+3yt3y1cost(6ty3t1+3t3ylnt)\frac {dy}{dx}=-\frac{6y^{3t}lny+3yt^{3y-1}}{cost(6ty^{3t-1}+3t^{3y}lnt)} (7)


Answer: dydx=6y3tlny+3yt3y1cost(6ty3t1+3t3ylnt)\frac {dy}{dx}=-\frac{6y^{3t}lny+3yt^{3y-1}}{cost(6ty^{3t-1}+3t^{3y}lnt)}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS