Given "2y^{3t}+t^{3y}=1" and "\\frac{dt}{dx}=\\frac{1}{cost}".
Let be "F(y;t)=2y^{3t}+t^{3y}-1"
So "\\frac{dy}{dt}=-\\frac{\\frac{dF}{dt}}{\\frac{dF}{dy}}" . (1)
"\\frac{dF}{dt}=2y^{3t}*3lny+3yt^{3y-1}"
"\\frac{dF}{dt}=6y^{3t}lny+3yt^{3y-1}" (2)
"\\frac{dF}{dy}=2*3ty^{3t-1}+3t^{3y}lnt"
"\\frac{dF}{dy}=6ty^{3t-1}+3t^{3y}lnt" (3)
Substitute (2) and (3) into (1).
"\\frac{dy}{dt}=-\\frac{6y^{3t}lny+3yt^{3y-1}}{6ty^{3t-1}+3t^{3y}lnt}" (4)
Let's find "\\frac {dy}{dx}":
"\\frac {dy}{dx}=\\frac{dy}{dt}*\\frac{dt}{dx}", (5)
where "\\frac{dt}{dx}=\\frac{1}{cost}". (6)
Substitute (4) and (6) into (5):
"\\frac {dy}{dx}=-\\frac{6y^{3t}lny+3yt^{3y-1}}{6ty^{3t-1}+3t^{3y}lnt}*\\frac{1}{cost}"
"\\frac {dy}{dx}=-\\frac{6y^{3t}lny+3yt^{3y-1}}{cost(6ty^{3t-1}+3t^{3y}lnt)}" (7)
Answer: "\\frac {dy}{dx}=-\\frac{6y^{3t}lny+3yt^{3y-1}}{cost(6ty^{3t-1}+3t^{3y}lnt)}".
Comments
Leave a comment