Given function is "f(x)=\\frac{x-2}{3-x}" .
Now given function has numerator and denominator both continuous and denominator is "3-x".
So given function is not defined when "3-x=0 \\implies x=3".
So, posible domain where function is defined should not contains x=3.
Hence Largest possible domain is D = "(-\\infin , 3) \\cup (3,\\infin)."
Now when "x\\in (-\\infin,3) \\implies x<3 \\implies 3-x>0" and when "x\\in (3,\\infin) \\implies 3-x<0."
Also, for "x\\in (3,\\infin), x-2\\in (1,\\infin)" and so "f(x)\\in (-\\infin,-1)."
And for "x\\in (-\\infin, 3), f(x)=-1+\\frac{1}{3-x} \\in -1+(0,\\infin) \\in (-1,\\infin)."
So, Range of given function is "(-\\infin,-1)\\cup(-1,\\infin)."
Comments
Leave a comment