Question #114630
Evaluvate integral 0 to 1 tan inverse xdx.
1
Expert's answer
2020-05-11T19:18:25-0400

Here, the objective is evaluate the definite integral using integration by parts.


Let u=arctan(x),dv=dxu=\arctan(x),dv=dx , then


du=11+x2dxdu=\frac{1}{1+x^2}dx


v=xv=x


So, use the integration by parts as,


01(arctan(x))dx=uv(v)du\int_{0}^1(\arctan(x))dx=uv-\int(v)du


=[xarctan(x)]0101x1+x2dx=[x\arctan(x)]_{0}^1-\int_{0}^1\frac{x}{1+x^2}dx


=π412012x1+x2dx=\frac{\pi}{4}-\frac{1}{2}\int_{0}^1\frac{2x}{1+x^2}dx


Here, g(x)=2x,g'(x)=2x, if g(x)=1+x2g(x)=1+x^2 , so using fundamental theorem of calculus, the integral is,


=π412[ln1+x2]01=\frac{\pi}{4}-\frac{1}{2}[ln|1+x^2|]_{0}^1


=π412[ln1+1ln1]=\frac{\pi}{4}-\frac{1}{2}[ln|1+1|-ln|1|]


=π412[ln20]=\frac{\pi}{4}-\frac{1}{2}[ln2-0|]


=π412ln2=\frac{\pi}{4}-\frac{1}{2}ln2


Therefore, the value of the definite integral is 01(arctan(x))dx=π412ln2\int_{0}^1(\arctan(x))dx=\frac{\pi}{4}-\frac{1}{2}ln2




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS