Here, the objective is evaluate the definite integral using integration by parts.
Let u=arctan(x),dv=dx , then
du=1+x21dx
v=x
So, use the integration by parts as,
∫01(arctan(x))dx=uv−∫(v)du
=[xarctan(x)]01−∫011+x2xdx
=4π−21∫011+x22xdx
Here, g′(x)=2x, if g(x)=1+x2 , so using fundamental theorem of calculus, the integral is,
=4π−21[ln∣1+x2∣]01
=4π−21[ln∣1+1∣−ln∣1∣]
=4π−21[ln2−0∣]
=4π−21ln2
Comments