Here, the objective is evaluate the definite integral using integration by parts.
Let "u=\\arctan(x),dv=dx" , then
"du=\\frac{1}{1+x^2}dx"
"v=x"
So, use the integration by parts as,
"\\int_{0}^1(\\arctan(x))dx=uv-\\int(v)du"
"=[x\\arctan(x)]_{0}^1-\\int_{0}^1\\frac{x}{1+x^2}dx"
"=\\frac{\\pi}{4}-\\frac{1}{2}\\int_{0}^1\\frac{2x}{1+x^2}dx"
Here, "g'(x)=2x," if "g(x)=1+x^2" , so using fundamental theorem of calculus, the integral is,
"=\\frac{\\pi}{4}-\\frac{1}{2}[ln|1+x^2|]_{0}^1"
"=\\frac{\\pi}{4}-\\frac{1}{2}[ln|1+1|-ln|1|]"
"=\\frac{\\pi}{4}-\\frac{1}{2}[ln2-0|]"
"=\\frac{\\pi}{4}-\\frac{1}{2}ln2"
Comments
Leave a comment