Given
∫xnexdx\int x^n e^xdx∫xnexdx
Let
u=xn dv=exdxdu=nxn−1dx v=ex\begin{aligned} u&=x^n \ \ \ \ \ \ \ &dv=&e^xdx\\ du&=nx^{n-1}dx \ \ \ \ \ \ \ &v=&e^x \end{aligned}udu=xn =nxn−1dx dv=v=exdxex
Then
∫xnexdx=uv−∫vdu=xnex−n∫xn−1exdx\begin{aligned} \int x^n e^xdx&= uv-\int vdu\\ &=x^n e^x- n \int x^{n-1} e^xdx \end{aligned}∫xnexdx=uv−∫vdu=xnex−n∫xn−1exdx
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Dear Luc, please use the panel for submitting a new question.
Derive a reductions formula for integral e^(mx)/ x^n dx
Comments
Dear Luc, please use the panel for submitting a new question.
Derive a reductions formula for integral e^(mx)/ x^n dx