Question #114633
Derive the following reduction formula :
Integral x^n e^x dx=x^n e^x-n integral x^n-1 e^x dx
1
Expert's answer
2020-05-13T19:54:54-0400

Given

xnexdx\int x^n e^xdx

Let

u=xn       dv=exdxdu=nxn1dx       v=ex\begin{aligned} u&=x^n \ \ \ \ \ \ \ &dv=&e^xdx\\ du&=nx^{n-1}dx \ \ \ \ \ \ \ &v=&e^x \end{aligned}

Then

xnexdx=uvvdu=xnexnxn1exdx\begin{aligned} \int x^n e^xdx&= uv-\int vdu\\ &=x^n e^x- n \int x^{n-1} e^xdx \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.07.21, 21:18

Dear Luc, please use the panel for submitting a new question.


Luc
29.05.21, 18:38

Derive a reductions formula for integral e^(mx)/ x^n dx

LATEST TUTORIALS
APPROVED BY CLIENTS