Question #114645
Use simpson's method to approximate integral 0 to 8(x^2-x+3)dx with 8 such-intervals.
1
Expert's answer
2020-05-18T18:50:53-0400

simpsonssimpson's rulerule ,

y=x2x+3y = x^{2}-x+3

integralintegral

a=0a =0

b=8b =8

intervalinterval

n=8n =8

Area=abf(x)dxArea = \int_{a}^{b} f(x)dx


=x3(y0+4y1+2y2+4y3+2y4....+4yn1+yn)=\frac{\triangle x}{3} (y_{0}+4y_{1}+2y_{2}+4y_{3}+2y_{4}....+4y_{n-1}+y_{n})


wherex=banwhere \triangle x = \frac{b-a}{n}


y0=00+3=3y_{0} = 0-0+3 =3

y1=3y_{1} = 3

y2=5y_{2} = 5

y3=9y_{3} = 9

y4=15y_{4} = 15

y5=23y_{5} = 23

y6=33y_{6} = 33

y7=45y_{7} = 45

y8=59y_{8} = 59

x=808\triangle x = \frac{8-0}{8}

x=1\triangle x =1

area=13(3+4×3+2×5+4×9+2×15+4×23+2×33+4×45+59)area =\frac{1}{3} (3+4\times3+2\times5+4\times 9+2\times15+4\times23+2\times33+4\times45+59)


 area=162.67area = 162.67


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
19.05.20, 21:16

Dear Haribhau Auti, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Haribhau Auti
19.05.20, 14:31

A very good answer ....excellent

LATEST TUTORIALS
APPROVED BY CLIENTS