Given polynomial is "f(x)=2x ^5+x^3+5x+1."
Since the number of changes in sign = 0, by the Descartes rule of sign,
Number of positive real roots = 0.
Now, substitute -x for x in given function,
"f(-x) = -2x^5-x^3-5x+1."
The sign changes from negative (-5x) to positive (1) only, by the Descartes sign rule,
Number of negative real roots = 1.
Also, the degree of f(x) is 5.
That is, the total number of roots = 5.
Remaining roots = 5 - 1 = 4
Hence, Real root is 1 and imaginary roots are 4.
Comments
Leave a comment