"lim_{x\\rightarrow x_0}\\ f(x)=A\\\\\n\\forall \\epsilon>0\\ \\exist \\delta=\\delta(\\epsilon):\\ \\forall x\\ 0<|x-x_0|<\\delta\\\\\n|f(x)-A|<\\epsilon\\text{ (Cauchy definition)}\\\\\nlim_{x\\rightarrow 16\/3}\\ 3(x-5)=1\\\\\n\\forall \\epsilon>0\\ \\exist \\delta=\\epsilon\/3:\\ \\forall x\\ 0<|x-16\/3|<\\delta\\\\\n|3(x-5)-1|<\\epsilon\\\\\n|3(x-5)-1|=|3x-16|=3|x-16\/3|\\\\\n|x-16\/3|=\\frac{1}{3}|3(x-5)-1|\\\\\n\\delta=\\epsilon\/3".
Comments
Leave a comment