Question #114918
Using the ε −δ definition, show that lim 3( x -5 )=1
1
Expert's answer
2020-05-11T14:20:46-0400

limxx0 f(x)=Aϵ>0 δ=δ(ϵ): x 0<xx0<δf(x)A<ϵ (Cauchy definition)limx16/3 3(x5)=1ϵ>0 δ=ϵ/3: x 0<x16/3<δ3(x5)1<ϵ3(x5)1=3x16=3x16/3x16/3=133(x5)1δ=ϵ/3lim_{x\rightarrow x_0}\ f(x)=A\\ \forall \epsilon>0\ \exist \delta=\delta(\epsilon):\ \forall x\ 0<|x-x_0|<\delta\\ |f(x)-A|<\epsilon\text{ (Cauchy definition)}\\ lim_{x\rightarrow 16/3}\ 3(x-5)=1\\ \forall \epsilon>0\ \exist \delta=\epsilon/3:\ \forall x\ 0<|x-16/3|<\delta\\ |3(x-5)-1|<\epsilon\\ |3(x-5)-1|=|3x-16|=3|x-16/3|\\ |x-16/3|=\frac{1}{3}|3(x-5)-1|\\ \delta=\epsilon/3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS