limx→x0 f(x)=A∀ϵ>0 ∃δ=δ(ϵ): ∀x 0<∣x−x0∣<δ∣f(x)−A∣<ϵ (Cauchy definition)limx→16/3 3(x−5)=1∀ϵ>0 ∃δ=ϵ/3: ∀x 0<∣x−16/3∣<δ∣3(x−5)−1∣<ϵ∣3(x−5)−1∣=∣3x−16∣=3∣x−16/3∣∣x−16/3∣=13∣3(x−5)−1∣δ=ϵ/3lim_{x\rightarrow x_0}\ f(x)=A\\ \forall \epsilon>0\ \exist \delta=\delta(\epsilon):\ \forall x\ 0<|x-x_0|<\delta\\ |f(x)-A|<\epsilon\text{ (Cauchy definition)}\\ lim_{x\rightarrow 16/3}\ 3(x-5)=1\\ \forall \epsilon>0\ \exist \delta=\epsilon/3:\ \forall x\ 0<|x-16/3|<\delta\\ |3(x-5)-1|<\epsilon\\ |3(x-5)-1|=|3x-16|=3|x-16/3|\\ |x-16/3|=\frac{1}{3}|3(x-5)-1|\\ \delta=\epsilon/3limx→x0 f(x)=A∀ϵ>0 ∃δ=δ(ϵ): ∀x 0<∣x−x0∣<δ∣f(x)−A∣<ϵ (Cauchy definition)limx→16/3 3(x−5)=1∀ϵ>0 ∃δ=ϵ/3: ∀x 0<∣x−16/3∣<δ∣3(x−5)−1∣<ϵ∣3(x−5)−1∣=∣3x−16∣=3∣x−16/3∣∣x−16/3∣=31∣3(x−5)−1∣δ=ϵ/3.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments