Answer to Question #114918 in Calculus for Deepak gupta

Question #114918
Using the ε −δ definition, show that lim 3( x -5 )=1
1
Expert's answer
2020-05-11T14:20:46-0400

"lim_{x\\rightarrow x_0}\\ f(x)=A\\\\\n\\forall \\epsilon>0\\ \\exist \\delta=\\delta(\\epsilon):\\ \\forall x\\ 0<|x-x_0|<\\delta\\\\\n|f(x)-A|<\\epsilon\\text{ (Cauchy definition)}\\\\\nlim_{x\\rightarrow 16\/3}\\ 3(x-5)=1\\\\\n\\forall \\epsilon>0\\ \\exist \\delta=\\epsilon\/3:\\ \\forall x\\ 0<|x-16\/3|<\\delta\\\\\n|3(x-5)-1|<\\epsilon\\\\\n|3(x-5)-1|=|3x-16|=3|x-16\/3|\\\\\n|x-16\/3|=\\frac{1}{3}|3(x-5)-1|\\\\\n\\delta=\\epsilon\/3".


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS