Let us assume that:
"y = \\ln (1 + x^2)"
And:
"v = \\tan^{-1} (x)"
Derivative of "y" with respect to "x" is:
"\\frac{dy}{dx} = \\frac{d}{dx} \\left( \\ln (1 + x^2) \\right) \\\\\n\\hspace{0.5 cm} = \\frac{1}{1+x^2} \\frac{d}{dx} (1 + x^2) \\\\"
"\\hspace{0.5 cm} = \\frac{1}{1 + x^2} \\left[ \\frac{d}{dx} (1) + \\frac{d}{dx} (x^2) \\right]"
"\\hspace{0.5 cm} = \\frac{1}{1+x^2} \\left( 0 + 2x \\right) \\hspace{1 cm}" [ "\\because \\frac{d}{dx} (x^n) = nx^{n-1} \\, and \\, \\frac{d}{dx} (c) = 0 \\," ( Where c is a constant ) ]
"\\hspace{0.5 cm} = \\frac{2x}{1 + x^2}"
Derivative of "v" with respect to "x" is:
"\\frac{dv}{dx} = \\frac{d}{dx} \\left( \\tan^{-1} (x) \\right) \\\\\n\\hspace{0.5 cm} = \\frac{1}{1+x^2}" [ "\\because \\frac{d}{dx} \\left( \\tan^{-1} (x) \\right) = \\frac{1}{1+x^2}" ]
Now:
"\\frac{dy}{dv} = \\frac{\\frac{dy}{dx}}{\\frac{dv}{dx}} = \\frac{\\frac{2x}{1+x^2}}{\\frac{1}{1+x^2}} = 2x"
Hence:
The derivative of "\\ln (1 + x^2)" with respect to "\\tan^{-1} (x)" or derivative of "y" with respect to "v" is:
"\\frac{dy}{dv} = 2x"
Comments
Leave a comment