(a) "A=\\int\\limits_0^1 (1+x+x^2)\\,dx = \\left(x+\\dfrac{x^2}{2} + \\dfrac{x^3}{3} \\right) \\Big|_{0}^1 = \\left(1+\\dfrac12+\\dfrac13\\right) - 0 = 1\\dfrac56 = \\dfrac{11}{6}."
(b) "A_n = \\sum\\limits_{i=1}^n \\dfrac{f(\\frac{i-1}{n})+f(\\frac{i}{n})}{2}\\cdot \\dfrac1n = \\dfrac1n\\left( \\dfrac{f(0)}{2} + f\\left(\\frac1n\\right)+\\ldots + f(\\frac{n-1}{n}) + \\dfrac{f(1)}{2}\\right) = \\dfrac1n\\left(\\dfrac12 + \\sum\\limits_{i=1}^{n-1} f(\\frac{i}{n}) + \\dfrac32 \\right) = \\dfrac1n\\left(\\sum\\limits_{i=1}^{n-1} \\dfrac{n^2+in+i^2}{n^2} + 2 \\right) = \\dfrac1n\\left( \\dfrac{n^2(n-1) + n(n(n-1)\/2) + (n-1)n(2n-1)\/6}{n^2} + \\dfrac32\\right) = \\dfrac1n\\left( \\dfrac{11n^2-12n+1}{6n} + \\dfrac32 \\right)= \\dfrac1n\\left( \\dfrac{11n^2+1}{6n}\\right) = \\dfrac{11}{6} + \\dfrac{1}{6n^2} ."
(c) When "n\\to \\infty," "\\dfrac{1}{6n^2}\\to 0." Therefore, "A_n \\to \\dfrac{11}{6}."
Comments
Leave a comment