(a) A = ∫ 0 1 ( 1 + x + x 2 ) d x = ( x + x 2 2 + x 3 3 ) ∣ 0 1 = ( 1 + 1 2 + 1 3 ) − 0 = 1 5 6 = 11 6 . A=\int\limits_0^1 (1+x+x^2)\,dx = \left(x+\dfrac{x^2}{2} + \dfrac{x^3}{3} \right) \Big|_{0}^1 = \left(1+\dfrac12+\dfrac13\right) - 0 = 1\dfrac56 = \dfrac{11}{6}. A = 0 ∫ 1 ( 1 + x + x 2 ) d x = ( x + 2 x 2 + 3 x 3 ) ∣ ∣ 0 1 = ( 1 + 2 1 + 3 1 ) − 0 = 1 6 5 = 6 11 .
(b) A n = ∑ i = 1 n f ( i − 1 n ) + f ( i n ) 2 ⋅ 1 n = 1 n ( f ( 0 ) 2 + f ( 1 n ) + … + f ( n − 1 n ) + f ( 1 ) 2 ) = 1 n ( 1 2 + ∑ i = 1 n − 1 f ( i n ) + 3 2 ) = 1 n ( ∑ i = 1 n − 1 n 2 + i n + i 2 n 2 + 2 ) = 1 n ( n 2 ( n − 1 ) + n ( n ( n − 1 ) / 2 ) + ( n − 1 ) n ( 2 n − 1 ) / 6 n 2 + 3 2 ) = 1 n ( 11 n 2 − 12 n + 1 6 n + 3 2 ) = 1 n ( 11 n 2 + 1 6 n ) = 11 6 + 1 6 n 2 . A_n = \sum\limits_{i=1}^n \dfrac{f(\frac{i-1}{n})+f(\frac{i}{n})}{2}\cdot \dfrac1n = \dfrac1n\left( \dfrac{f(0)}{2} + f\left(\frac1n\right)+\ldots + f(\frac{n-1}{n}) + \dfrac{f(1)}{2}\right) = \dfrac1n\left(\dfrac12 + \sum\limits_{i=1}^{n-1} f(\frac{i}{n}) + \dfrac32 \right) = \dfrac1n\left(\sum\limits_{i=1}^{n-1} \dfrac{n^2+in+i^2}{n^2} + 2 \right) = \dfrac1n\left( \dfrac{n^2(n-1) + n(n(n-1)/2) + (n-1)n(2n-1)/6}{n^2} + \dfrac32\right) = \dfrac1n\left( \dfrac{11n^2-12n+1}{6n} + \dfrac32 \right)= \dfrac1n\left( \dfrac{11n^2+1}{6n}\right) = \dfrac{11}{6} + \dfrac{1}{6n^2} . A n = i = 1 ∑ n 2 f ( n i − 1 ) + f ( n i ) ⋅ n 1 = n 1 ( 2 f ( 0 ) + f ( n 1 ) + … + f ( n n − 1 ) + 2 f ( 1 ) ) = n 1 ( 2 1 + i = 1 ∑ n − 1 f ( n i ) + 2 3 ) = n 1 ( i = 1 ∑ n − 1 n 2 n 2 + in + i 2 + 2 ) = n 1 ( n 2 n 2 ( n − 1 ) + n ( n ( n − 1 ) /2 ) + ( n − 1 ) n ( 2 n − 1 ) /6 + 2 3 ) = n 1 ( 6 n 11 n 2 − 12 n + 1 + 2 3 ) = n 1 ( 6 n 11 n 2 + 1 ) = 6 11 + 6 n 2 1 .
(c) When n → ∞ , n\to \infty, n → ∞ , 1 6 n 2 → 0. \dfrac{1}{6n^2}\to 0. 6 n 2 1 → 0. Therefore, A n → 11 6 . A_n \to \dfrac{11}{6}. A n → 6 11 .
Comments