Answer to Question #115021 in Calculus for Lizwi

Question #115021
Given f(x)=1+x+x2,

(a) Evaluate the definite integral A=∫10(1+x+x2)dx.

(b) Find the approximate An of the integral A by a sum, using n strips of equal width, and evaluate the sum.

(c) Find limn→∞An.
1
Expert's answer
2020-05-11T13:22:30-0400

(a) A=01(1+x+x2)dx=(x+x22+x33)01=(1+12+13)0=156=116.A=\int\limits_0^1 (1+x+x^2)\,dx = \left(x+\dfrac{x^2}{2} + \dfrac{x^3}{3} \right) \Big|_{0}^1 = \left(1+\dfrac12+\dfrac13\right) - 0 = 1\dfrac56 = \dfrac{11}{6}.

(b) An=i=1nf(i1n)+f(in)21n=1n(f(0)2+f(1n)++f(n1n)+f(1)2)=1n(12+i=1n1f(in)+32)=1n(i=1n1n2+in+i2n2+2)=1n(n2(n1)+n(n(n1)/2)+(n1)n(2n1)/6n2+32)=1n(11n212n+16n+32)=1n(11n2+16n)=116+16n2.A_n = \sum\limits_{i=1}^n \dfrac{f(\frac{i-1}{n})+f(\frac{i}{n})}{2}\cdot \dfrac1n = \dfrac1n\left( \dfrac{f(0)}{2} + f\left(\frac1n\right)+\ldots + f(\frac{n-1}{n}) + \dfrac{f(1)}{2}\right) = \dfrac1n\left(\dfrac12 + \sum\limits_{i=1}^{n-1} f(\frac{i}{n}) + \dfrac32 \right) = \dfrac1n\left(\sum\limits_{i=1}^{n-1} \dfrac{n^2+in+i^2}{n^2} + 2 \right) = \dfrac1n\left( \dfrac{n^2(n-1) + n(n(n-1)/2) + (n-1)n(2n-1)/6}{n^2} + \dfrac32\right) = \dfrac1n\left( \dfrac{11n^2-12n+1}{6n} + \dfrac32 \right)= \dfrac1n\left( \dfrac{11n^2+1}{6n}\right) = \dfrac{11}{6} + \dfrac{1}{6n^2} .


(c) When n,n\to \infty, 16n20.\dfrac{1}{6n^2}\to 0. Therefore, An116.A_n \to \dfrac{11}{6}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment