Question #115069
[img]https://upload.cc/i1/2020/05/09/2hm3MA.jpg[/img]


whole question is in picture,R=4,you can sub R=4
1
Expert's answer
2020-05-14T17:03:16-0400

(a) Let R=4R=4


(i) x+6x(x2+62)dx=(6x6(x2+36)+16x)dx\int \frac{x+6}{x(x^2+6^2)}\,dx=\int\Big(\frac{6-x}{6(x^2+36)}+\frac{1}{6x}\Big)\,dx

=dxx2+36112d(x2+36)x2+36+16dxx=\int \frac{dx}{x^2+36}-\frac{1}{12}\int\frac{d(x^2+36)}{x^2+36}+\frac{1}{6}\int\frac{dx}{x}

=16arctan(x6)112ln(x2+36)+16lnx+C=\frac{1}{6}\arctan(\frac{x}{6})-\frac{1}{12}\ln(x^2+36)+\frac{1}{6}\ln x+C


(ii) sin3xcos2xdx=(1cos2x)cos2xsinxdx\int\sin^3x\cos^2x\,dx=\int (1-\cos^2x)\cos^2x\sin x\,dx

cosx=t,sinxdx=dt|\cos x=t, \,\sin x\,dx=-dt|

=(1t2)t2(dt)=(t4t2)dt=t55t33+C=\int(1-t^2)t^2(-dt)=\int(t^4-t^2)\,dt=\frac{t^5}{5}-\frac{t^3}{3}+C

=15cos5x13cos3x+C=\frac{1}{5}\cos^5 x-\frac{1}{3}\cos^3 x+C


(iii)03(x2)x+1dx=\int_0^3(x-2)\sqrt{x+1}\,dx=

u=x+1,x=u21,dx=2udu\Big|u=\sqrt{x+1}, \, x=u^2-1,\, dx=2u\,du\Big|

=12(u23)2u2du=12(2u46u2)du=85=1.6=\int_1^2(u^2-3)2u^2\,du=\int_1^2(2u^4-6u^2)\,du=-\frac{8}{5}=-1.6


(b) (i) x2exdx=(x2exexdx2)\int x^2e^{-x}\,dx=-(x^2e^{-x}-\int e^{-x} \,dx^2)

=x2ex+2xexdx=-x^2e^{-x}+\int 2xe^{-x}\,dx

=x2ex2xex+2exdx=-x^2e^{-x}-2xe^{-x}+2\int e^{-x}\,dx

=x2ex2xex2ex+C=-x^2e^{-x}-2xe^{-x}-2e^{-x}+C

=(x2+2x+2)ex+C=-(x^2+2x+2)e^{-x}+C


(ii) L=02(ln(t+1)t+1)2dtL=\int_0^2\Big(\frac{\ln(t+1)}{t+1}\Big)^2\,dt

t=ex1,x=ln(t+1),dx=dtt+1\Big|t=e^x-1,\, x=\ln(t+1),\, dx=\frac{dt}{t+1}\Big|

=0ln3x2exdx=\int_0^{\ln 3} x^2e^{-x}\,dx

=213(ln23+2ln3+2)0.1986=2-\frac{1}{3}(\ln^23+2\ln3+2)\approx 0.1986


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS