(a) Let "R=4"
(i) "\\int \\frac{x+6}{x(x^2+6^2)}\\,dx=\\int\\Big(\\frac{6-x}{6(x^2+36)}+\\frac{1}{6x}\\Big)\\,dx"
"=\\int \\frac{dx}{x^2+36}-\\frac{1}{12}\\int\\frac{d(x^2+36)}{x^2+36}+\\frac{1}{6}\\int\\frac{dx}{x}"
"=\\frac{1}{6}\\arctan(\\frac{x}{6})-\\frac{1}{12}\\ln(x^2+36)+\\frac{1}{6}\\ln x+C"
(ii) "\\int\\sin^3x\\cos^2x\\,dx=\\int (1-\\cos^2x)\\cos^2x\\sin x\\,dx"
"|\\cos x=t, \\,\\sin x\\,dx=-dt|"
"=\\int(1-t^2)t^2(-dt)=\\int(t^4-t^2)\\,dt=\\frac{t^5}{5}-\\frac{t^3}{3}+C"
"=\\frac{1}{5}\\cos^5 x-\\frac{1}{3}\\cos^3 x+C"
(iii)"\\int_0^3(x-2)\\sqrt{x+1}\\,dx="
"\\Big|u=\\sqrt{x+1}, \\, x=u^2-1,\\, dx=2u\\,du\\Big|"
"=\\int_1^2(u^2-3)2u^2\\,du=\\int_1^2(2u^4-6u^2)\\,du=-\\frac{8}{5}=-1.6"
(b) (i) "\\int x^2e^{-x}\\,dx=-(x^2e^{-x}-\\int e^{-x} \\,dx^2)"
"=-x^2e^{-x}+\\int 2xe^{-x}\\,dx"
"=-x^2e^{-x}-2xe^{-x}+2\\int e^{-x}\\,dx"
"=-x^2e^{-x}-2xe^{-x}-2e^{-x}+C"
"=-(x^2+2x+2)e^{-x}+C"
(ii) "L=\\int_0^2\\Big(\\frac{\\ln(t+1)}{t+1}\\Big)^2\\,dt"
"\\Big|t=e^x-1,\\, x=\\ln(t+1),\\, dx=\\frac{dt}{t+1}\\Big|"
"=\\int_0^{\\ln 3} x^2e^{-x}\\,dx"
"=2-\\frac{1}{3}(\\ln^23+2\\ln3+2)\\approx 0.1986"
Comments
Leave a comment