(a) Let R=4
(i) ∫x(x2+62)x+6dx=∫(6(x2+36)6−x+6x1)dx
=∫x2+36dx−121∫x2+36d(x2+36)+61∫xdx
=61arctan(6x)−121ln(x2+36)+61lnx+C
(ii) ∫sin3xcos2xdx=∫(1−cos2x)cos2xsinxdx
∣cosx=t,sinxdx=−dt∣
=∫(1−t2)t2(−dt)=∫(t4−t2)dt=5t5−3t3+C
=51cos5x−31cos3x+C
(iii)∫03(x−2)x+1dx=
∣∣u=x+1,x=u2−1,dx=2udu∣∣
=∫12(u2−3)2u2du=∫12(2u4−6u2)du=−58=−1.6
(b) (i) ∫x2e−xdx=−(x2e−x−∫e−xdx2)
=−x2e−x+∫2xe−xdx
=−x2e−x−2xe−x+2∫e−xdx
=−x2e−x−2xe−x−2e−x+C
=−(x2+2x+2)e−x+C
(ii) L=∫02(t+1ln(t+1))2dt
∣∣t=ex−1,x=ln(t+1),dx=t+1dt∣∣
=∫0ln3x2e−xdx
=2−31(ln23+2ln3+2)≈0.1986
Comments