Answer to Question #115069 in Calculus for hah112

Question #115069
[img]https://upload.cc/i1/2020/05/09/2hm3MA.jpg[/img]


whole question is in picture,R=4,you can sub R=4
1
Expert's answer
2020-05-14T17:03:16-0400

(a) Let "R=4"


(i) "\\int \\frac{x+6}{x(x^2+6^2)}\\,dx=\\int\\Big(\\frac{6-x}{6(x^2+36)}+\\frac{1}{6x}\\Big)\\,dx"

"=\\int \\frac{dx}{x^2+36}-\\frac{1}{12}\\int\\frac{d(x^2+36)}{x^2+36}+\\frac{1}{6}\\int\\frac{dx}{x}"

"=\\frac{1}{6}\\arctan(\\frac{x}{6})-\\frac{1}{12}\\ln(x^2+36)+\\frac{1}{6}\\ln x+C"


(ii) "\\int\\sin^3x\\cos^2x\\,dx=\\int (1-\\cos^2x)\\cos^2x\\sin x\\,dx"

"|\\cos x=t, \\,\\sin x\\,dx=-dt|"

"=\\int(1-t^2)t^2(-dt)=\\int(t^4-t^2)\\,dt=\\frac{t^5}{5}-\\frac{t^3}{3}+C"

"=\\frac{1}{5}\\cos^5 x-\\frac{1}{3}\\cos^3 x+C"


(iii)"\\int_0^3(x-2)\\sqrt{x+1}\\,dx="

"\\Big|u=\\sqrt{x+1}, \\, x=u^2-1,\\, dx=2u\\,du\\Big|"

"=\\int_1^2(u^2-3)2u^2\\,du=\\int_1^2(2u^4-6u^2)\\,du=-\\frac{8}{5}=-1.6"


(b) (i) "\\int x^2e^{-x}\\,dx=-(x^2e^{-x}-\\int e^{-x} \\,dx^2)"

"=-x^2e^{-x}+\\int 2xe^{-x}\\,dx"

"=-x^2e^{-x}-2xe^{-x}+2\\int e^{-x}\\,dx"

"=-x^2e^{-x}-2xe^{-x}-2e^{-x}+C"

"=-(x^2+2x+2)e^{-x}+C"


(ii) "L=\\int_0^2\\Big(\\frac{\\ln(t+1)}{t+1}\\Big)^2\\,dt"

"\\Big|t=e^x-1,\\, x=\\ln(t+1),\\, dx=\\frac{dt}{t+1}\\Big|"

"=\\int_0^{\\ln 3} x^2e^{-x}\\,dx"

"=2-\\frac{1}{3}(\\ln^23+2\\ln3+2)\\approx 0.1986"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS