(a) Let R = 4 R=4 R = 4
(i) ∫ x + 6 x ( x 2 + 6 2 ) d x = ∫ ( 6 − x 6 ( x 2 + 36 ) + 1 6 x ) d x \int \frac{x+6}{x(x^2+6^2)}\,dx=\int\Big(\frac{6-x}{6(x^2+36)}+\frac{1}{6x}\Big)\,dx ∫ x ( x 2 + 6 2 ) x + 6 d x = ∫ ( 6 ( x 2 + 36 ) 6 − x + 6 x 1 ) d x
= ∫ d x x 2 + 36 − 1 12 ∫ d ( x 2 + 36 ) x 2 + 36 + 1 6 ∫ d x x =\int \frac{dx}{x^2+36}-\frac{1}{12}\int\frac{d(x^2+36)}{x^2+36}+\frac{1}{6}\int\frac{dx}{x} = ∫ x 2 + 36 d x − 12 1 ∫ x 2 + 36 d ( x 2 + 36 ) + 6 1 ∫ x d x
= 1 6 arctan ( x 6 ) − 1 12 ln ( x 2 + 36 ) + 1 6 ln x + C =\frac{1}{6}\arctan(\frac{x}{6})-\frac{1}{12}\ln(x^2+36)+\frac{1}{6}\ln x+C = 6 1 arctan ( 6 x ) − 12 1 ln ( x 2 + 36 ) + 6 1 ln x + C
(ii) ∫ sin 3 x cos 2 x d x = ∫ ( 1 − cos 2 x ) cos 2 x sin x d x \int\sin^3x\cos^2x\,dx=\int (1-\cos^2x)\cos^2x\sin x\,dx ∫ sin 3 x cos 2 x d x = ∫ ( 1 − cos 2 x ) cos 2 x sin x d x
∣ cos x = t , sin x d x = − d t ∣ |\cos x=t, \,\sin x\,dx=-dt| ∣ cos x = t , sin x d x = − d t ∣
= ∫ ( 1 − t 2 ) t 2 ( − d t ) = ∫ ( t 4 − t 2 ) d t = t 5 5 − t 3 3 + C =\int(1-t^2)t^2(-dt)=\int(t^4-t^2)\,dt=\frac{t^5}{5}-\frac{t^3}{3}+C = ∫ ( 1 − t 2 ) t 2 ( − d t ) = ∫ ( t 4 − t 2 ) d t = 5 t 5 − 3 t 3 + C
= 1 5 cos 5 x − 1 3 cos 3 x + C =\frac{1}{5}\cos^5 x-\frac{1}{3}\cos^3 x+C = 5 1 cos 5 x − 3 1 cos 3 x + C
(iii)∫ 0 3 ( x − 2 ) x + 1 d x = \int_0^3(x-2)\sqrt{x+1}\,dx= ∫ 0 3 ( x − 2 ) x + 1 d x =
∣ u = x + 1 , x = u 2 − 1 , d x = 2 u d u ∣ \Big|u=\sqrt{x+1}, \, x=u^2-1,\, dx=2u\,du\Big| ∣ ∣ u = x + 1 , x = u 2 − 1 , d x = 2 u d u ∣ ∣
= ∫ 1 2 ( u 2 − 3 ) 2 u 2 d u = ∫ 1 2 ( 2 u 4 − 6 u 2 ) d u = − 8 5 = − 1.6 =\int_1^2(u^2-3)2u^2\,du=\int_1^2(2u^4-6u^2)\,du=-\frac{8}{5}=-1.6 = ∫ 1 2 ( u 2 − 3 ) 2 u 2 d u = ∫ 1 2 ( 2 u 4 − 6 u 2 ) d u = − 5 8 = − 1.6
(b) (i) ∫ x 2 e − x d x = − ( x 2 e − x − ∫ e − x d x 2 ) \int x^2e^{-x}\,dx=-(x^2e^{-x}-\int e^{-x} \,dx^2) ∫ x 2 e − x d x = − ( x 2 e − x − ∫ e − x d x 2 )
= − x 2 e − x + ∫ 2 x e − x d x =-x^2e^{-x}+\int 2xe^{-x}\,dx = − x 2 e − x + ∫ 2 x e − x d x
= − x 2 e − x − 2 x e − x + 2 ∫ e − x d x =-x^2e^{-x}-2xe^{-x}+2\int e^{-x}\,dx = − x 2 e − x − 2 x e − x + 2 ∫ e − x d x
= − x 2 e − x − 2 x e − x − 2 e − x + C =-x^2e^{-x}-2xe^{-x}-2e^{-x}+C = − x 2 e − x − 2 x e − x − 2 e − x + C
= − ( x 2 + 2 x + 2 ) e − x + C =-(x^2+2x+2)e^{-x}+C = − ( x 2 + 2 x + 2 ) e − x + C
(ii) L = ∫ 0 2 ( ln ( t + 1 ) t + 1 ) 2 d t L=\int_0^2\Big(\frac{\ln(t+1)}{t+1}\Big)^2\,dt L = ∫ 0 2 ( t + 1 l n ( t + 1 ) ) 2 d t
∣ t = e x − 1 , x = ln ( t + 1 ) , d x = d t t + 1 ∣ \Big|t=e^x-1,\, x=\ln(t+1),\, dx=\frac{dt}{t+1}\Big| ∣ ∣ t = e x − 1 , x = ln ( t + 1 ) , d x = t + 1 d t ∣ ∣
= ∫ 0 ln 3 x 2 e − x d x =\int_0^{\ln 3} x^2e^{-x}\,dx = ∫ 0 l n 3 x 2 e − x d x
= 2 − 1 3 ( ln 2 3 + 2 ln 3 + 2 ) ≈ 0.1986 =2-\frac{1}{3}(\ln^23+2\ln3+2)\approx 0.1986 = 2 − 3 1 ( ln 2 3 + 2 ln 3 + 2 ) ≈ 0.1986
Comments