Consider the function "f(x)=sec(2x)"
The McLaurin series of a function "f(x)" is given by the expansion formula as follows:
Now, find the first derivative of the function as,
Find the second derivative of the function as,
"f''(x)=4sec(2x)tan^2(2x)+4sec^3(2x)"
Find the third derivative of the function as,
Find the fourth derivative of the function as,
"f^{iv}(x)=2[(-4\\left(-2\\sec \\left(2x\\right)+4\\sec ^3\\left(2x\\right)\\right)+24\\left(6\\sec ^3\\left(2x\\right)\\tan ^2\\left(2x\\right)+2\\sec ^5\\left(2x\\right)\\right)]"
Next, find the function value and derivative value at "x=0" as,
So, the third order McLaurin expansion is given by,
Comments
Leave a comment