∫cosaxdx=...
multipy all to acosax
... = ∫acos2axacosaxdx=∫acos2axdsinax=...
(use formula cos2ax=1−sin2ax )
...=∫a(1−sin2ax)dsinax=...
take the constant a out of brackets and make a substitution y=sinax
...=a1∫(1−y2)dy=...
Using a decomposition into fractions
(1−y2)1=(1−y)(1+y)1=(1−y)A+(1+y)B=(1−y)(1+y)A(1+y)+B(1−y)=(1−y)(1+y)A+Ay+B−By=(1−y)(1+y)A(1+y)+B(1−y)=(1−y)(1+y)A+B+y(A−B).
{A+B=1A−B=0 , {A=1/2B=1/2 .
...=2a1(∫(1−y)dy+∫(1+y)dy)=2a1(−∫(1−y)d(1−y)+∫(1+y)d(1+y))=2a1(−ln(1−y)+const1+ln(1+y)+const2)=2a1(−ln(1−sinax)+const1+ln(1+sinax)+const2)=2a1(ln(1+sinax)−ln(1−sinax))+Const.
Answer: ∫cosaxdx=2a1(ln(1+sinax)−ln(1−sinax))+Const.
Comments
Leave a comment