∫cos⁻¹ax dx
"\\int \\cfrac {dx}{\\cos ax}= ..."
multipy all to "a\\cos ax"
... = "\\int \\cfrac {a\\cos ax dx}{a\\cos^2 ax}= \\int \\cfrac { d\\sin ax}{a\\cos^2 ax} = ..."
(use formula "\\cos^2 ax = 1 - \\sin^2 ax" )
"... = \\int \\cfrac { d\\sin ax}{a(1-\\sin^2 ax)} = ..."
take the constant a out of brackets and make a substitution "y = \\sin ax"
"... =\\frac 1a \\int \\cfrac {dy}{(1-y^2)} = ..."
Using a decomposition into fractions
"\\cfrac {1}{(1-y^2)} = \\cfrac {1}{(1-y)(1+y)} = \\cfrac {A}{(1-y)}+\\cfrac {B}{(1+y)} = \\cfrac {A(1+y) +B(1-y) }{(1-y)(1+y)}=\\cfrac {A+Ay +B-By }{(1-y)(1+y)} = \\cfrac {A(1+y) +B(1-y) }{(1-y)(1+y)}=\\cfrac {A+B+y(A -B) }{(1-y)(1+y)}."
"\\begin{cases}\n A+B=1 \\\\\n A-B = 0\n\\end{cases}" , "\\begin{cases}\n A=1\/2 \\\\\n B=1\/2\n\\end{cases}" .
"... =\\cfrac {1}{2a} (\\int \\cfrac {dy}{(1-y)}+ \\int \\cfrac {dy}{(1+y)})= \\cfrac {1}{2a} (-\\int \\cfrac {d(1-y)}{(1-y)}+ \\int \\cfrac {d(1+y)}{(1+y)})=\\cfrac {1}{2a} (-\\ln (1-y) + const_1+\\ln (1+y)+const_2) = \\cfrac {1}{2a} (-\\ln (1-\\sin ax) + const_1+\\ln (1+\\sin ax)+const_2) = \\cfrac {1}{2a} (\\ln (1+\\sin ax)-\\ln (1-\\sin ax)) + Const."
Answer: "\\int \\cfrac {dx}{\\cos ax}= \\cfrac {1}{2a} (\\ln (1+\\sin ax)-\\ln (1-\\sin ax)) + Const."
Comments
Leave a comment