Answer to Question #108788 in Calculus for Nimra

Question #108788

∫cos⁻¹ax dx


1
Expert's answer
2020-04-16T18:45:23-0400

dxcosax=...\int \cfrac {dx}{\cos ax}= ...

multipy all to acosaxa\cos ax

... = acosaxdxacos2ax=dsinaxacos2ax=...\int \cfrac {a\cos ax dx}{a\cos^2 ax}= \int \cfrac { d\sin ax}{a\cos^2 ax} = ...

(use formula cos2ax=1sin2ax\cos^2 ax = 1 - \sin^2 ax )

...=dsinaxa(1sin2ax)=...... = \int \cfrac { d\sin ax}{a(1-\sin^2 ax)} = ...

take the constant a out of brackets and make a substitution y=sinaxy = \sin ax

...=1ady(1y2)=...... =\frac 1a \int \cfrac {dy}{(1-y^2)} = ...

Using a decomposition into fractions

1(1y2)=1(1y)(1+y)=A(1y)+B(1+y)=A(1+y)+B(1y)(1y)(1+y)=A+Ay+BBy(1y)(1+y)=A(1+y)+B(1y)(1y)(1+y)=A+B+y(AB)(1y)(1+y).\cfrac {1}{(1-y^2)} = \cfrac {1}{(1-y)(1+y)} = \cfrac {A}{(1-y)}+\cfrac {B}{(1+y)} = \cfrac {A(1+y) +B(1-y) }{(1-y)(1+y)}=\cfrac {A+Ay +B-By }{(1-y)(1+y)} = \cfrac {A(1+y) +B(1-y) }{(1-y)(1+y)}=\cfrac {A+B+y(A -B) }{(1-y)(1+y)}.

{A+B=1AB=0\begin{cases} A+B=1 \\ A-B = 0 \end{cases} , {A=1/2B=1/2\begin{cases} A=1/2 \\ B=1/2 \end{cases} .

...=12a(dy(1y)+dy(1+y))=12a(d(1y)(1y)+d(1+y)(1+y))=12a(ln(1y)+const1+ln(1+y)+const2)=12a(ln(1sinax)+const1+ln(1+sinax)+const2)=12a(ln(1+sinax)ln(1sinax))+Const.... =\cfrac {1}{2a} (\int \cfrac {dy}{(1-y)}+ \int \cfrac {dy}{(1+y)})= \cfrac {1}{2a} (-\int \cfrac {d(1-y)}{(1-y)}+ \int \cfrac {d(1+y)}{(1+y)})=\cfrac {1}{2a} (-\ln (1-y) + const_1+\ln (1+y)+const_2) = \cfrac {1}{2a} (-\ln (1-\sin ax) + const_1+\ln (1+\sin ax)+const_2) = \cfrac {1}{2a} (\ln (1+\sin ax)-\ln (1-\sin ax)) + Const.

Answer: dxcosax=12a(ln(1+sinax)ln(1sinax))+Const.\int \cfrac {dx}{\cos ax}= \cfrac {1}{2a} (\ln (1+\sin ax)-\ln (1-\sin ax)) + Const.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment