Answer to Question #108781 in Calculus for Nimra

Question #108781

∫sec(ax) dx


1
Expert's answer
2020-04-16T17:41:38-0400

"\\begin{aligned}\n & \\int{\\sec }\\left( ax \\right)dx \\\\ \n & \\\\ \n & \\text{Apply}\\,\\text{u-substitution}:\\,u=xa \\\\ \n & \\\\ \n & \\Rightarrow \\,du=adx \\\\ \n & \\\\ \n & \\Rightarrow \\,dx=\\frac{1}{a}du \\\\ \n & \\\\ \n & \\int{\\sec }\\left( ax \\right)dx=\\int{\\sec }\\left( u \\right)\\cdot \\frac{1}{a}du \\\\ \n & \\\\ \n & =\\frac{1}{a}\\int{\\sec }\\left( u \\right)du \\\\ \n & \\\\ \n & \\text{Use}\\,\\text{the}\\,\\text{common}\\,\\text{integral}:\\quad \\int{\\sec }\\left( u \\right)du=\\ln \\left| \\sec \\left( u \\right)+\\tan \\left( u \\right) \\right| \\\\ \n & \\\\ \n & =\\frac{1}{a}\\left( \\ln \\left| \\sec \\left( u \\right)+\\tan \\left( u \\right) \\right| \\right)+C \\\\ \n & \\\\ \n & \\text{Substitute}\\,\\text{back}\\,u=xa \\\\ \n & \\\\ \n & =\\frac{1}{a}\\left( \\ln \\left| \\sec \\left( xa \\right)+\\tan \\left( xa \\right) \\right| \\right)+C \\\\ \n\\end{aligned}"


We can use integral table given in any text book to find the well-known integral. For example, we can find the integral of sec(x) in the link below:

https://math.boisestate.edu/~wright/courses/m333/IntegralTablesStewart.pdf

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS