∫sec(ax) dx
"\\begin{aligned}\n & \\int{\\sec }\\left( ax \\right)dx \\\\ \n & \\\\ \n & \\text{Apply}\\,\\text{u-substitution}:\\,u=xa \\\\ \n & \\\\ \n & \\Rightarrow \\,du=adx \\\\ \n & \\\\ \n & \\Rightarrow \\,dx=\\frac{1}{a}du \\\\ \n & \\\\ \n & \\int{\\sec }\\left( ax \\right)dx=\\int{\\sec }\\left( u \\right)\\cdot \\frac{1}{a}du \\\\ \n & \\\\ \n & =\\frac{1}{a}\\int{\\sec }\\left( u \\right)du \\\\ \n & \\\\ \n & \\text{Use}\\,\\text{the}\\,\\text{common}\\,\\text{integral}:\\quad \\int{\\sec }\\left( u \\right)du=\\ln \\left| \\sec \\left( u \\right)+\\tan \\left( u \\right) \\right| \\\\ \n & \\\\ \n & =\\frac{1}{a}\\left( \\ln \\left| \\sec \\left( u \\right)+\\tan \\left( u \\right) \\right| \\right)+C \\\\ \n & \\\\ \n & \\text{Substitute}\\,\\text{back}\\,u=xa \\\\ \n & \\\\ \n & =\\frac{1}{a}\\left( \\ln \\left| \\sec \\left( xa \\right)+\\tan \\left( xa \\right) \\right| \\right)+C \\\\ \n\\end{aligned}"
We can use integral table given in any text book to find the well-known integral. For example, we can find the integral of sec(x) in the link below:
https://math.boisestate.edu/~wright/courses/m333/IntegralTablesStewart.pdf
Comments
Leave a comment