∫sec(ax)dxApplyu-substitution:u=xa⇒du=adx⇒dx=a1du∫sec(ax)dx=∫sec(u)⋅a1du=a1∫sec(u)duUsethecommonintegral:∫sec(u)du=ln∣sec(u)+tan(u)∣=a1(ln∣sec(u)+tan(u)∣)+CSubstitutebacku=xa=a1(ln∣sec(xa)+tan(xa)∣)+C
We can use integral table given in any text book to find the well-known integral. For example, we can find the integral of sec(x) in the link below:
https://math.boisestate.edu/~wright/courses/m333/IntegralTablesStewart.pdf
Comments