∫tan x dx
∫tanxdx=∫sinxcosxdxlett=cosxdt=−sinxdx∫sinxcosxdx=∫−dtt=−ln∣t∣+c=−ln∣cosx∣+c\int\tan xdx=\int\frac{\sin x}{\cos x}dx\\ let\\ t=\cos x\\ dt=-\sin x dx\\ \int\frac{\sin x}{\cos x}dx=\int\frac{-dt}{t}=- \ln|t|+c=-\ln|\cos x|+c∫tanxdx=∫cosxsinxdxlett=cosxdt=−sinxdx∫cosxsinxdx=∫t−dt=−ln∣t∣+c=−ln∣cosx∣+c
∫tanxdx=−ln∣cosx∣+c\int\tan xdx=-\ln|cos x|+c∫tanxdx=−ln∣cosx∣+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments