Let x= the width of rectangle in ft, y= the length of rectangle in ft.
A fence must be built to enclose a rectangular area of 45,000 ft2
xy=45000=>y=x45000 The cost of the fence
C=2(2x)+1(2y)=4x+2y Hence
C=C(x)=4x+2(x45000), x>0 Find the first derivative with respect to x
C′(x)=4−x290000 Find the critical value(s)
C′(x)=0=>4−x290000=0=>x1=−150,x2=150 First derivative test
If x<−150, C′(x)>0,C(x) increases.
If −150<x<0,C′(x)<0,C(x) decreases.
If 0<x<150,C′(x)<0,C(x) decreases.
If x>150,C′(x)>0,C(x) increases.
Since x>0, then the function C(x) has the absolute minimum at x=150.
So y=15045000=300
The cost of the least expensive fence will be
Cmin=2(2)(150)+1(2)(300)=$1200
Comments