Question #108783

∫sin²(ax)dx


1
Expert's answer
2020-04-14T18:31:56-0400

Answer:sin2(ax)  dx  =12xsin  2ax4a+C\int\sin^2(ax)\;dx\;=\frac12x-\frac{\sin\;2ax}{4a}+C

sin2(ax)  dx=  1aa  sin2(ax)  dxu=ax    du  =  a  dxSubstitute  u.1aa  sin2(ax)  dx=1asin2u  dusin2u=  1cos2u2sin2u  du  =  (12cos2u2)  du  =  =12u12×sin2u2+C=12usin2u4+C==12axsin2ax4+Csin2(ax)  dx  =1a(  12axsin2ax4)+C==12xsin2ax4a+C\int\sin^2(ax)\;dx=\;\frac1a\int a\;\sin^2(ax)\;dx\\u=ax\;\Rightarrow\;du\;=\;a\;dx\\Substitute\;u.\\\frac1a\int a\;\sin^2(ax)\;dx=\frac1a\int\sin^2u\;du\\\sin^2u=\;\frac{1-\cos2u}2\\\int\sin^2u\;du\;=\;\int(\frac12-\frac{\cos2u}2)\;du\;=\;\\=\frac12u-\frac12\times\frac{\sin2u}2+C=\frac12u-\frac{\sin2u}4+C=\\=\frac12ax-\frac{\sin2ax}4+C\\\int\sin^2(ax)\;dx\;=\frac1a(\;\frac12ax-\frac{\sin2ax}4)+C=\\=\frac12x-\frac{\sin2ax}{4a}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS