∫sin²(ax)dx
∫sin2(ax) dx= 1a∫a sin2(ax) dxu=ax ⇒ du = a dxSubstitute u.1a∫a sin2(ax) dx=1a∫sin2u dusin2u= 1−cos2u2∫sin2u du = ∫(12−cos2u2) du = =12u−12×sin2u2+C=12u−sin2u4+C==12ax−sin2ax4+C∫sin2(ax) dx =1a( 12ax−sin2ax4)+C==12x−sin2ax4a+C\int\sin^2(ax)\;dx=\;\frac1a\int a\;\sin^2(ax)\;dx\\u=ax\;\Rightarrow\;du\;=\;a\;dx\\Substitute\;u.\\\frac1a\int a\;\sin^2(ax)\;dx=\frac1a\int\sin^2u\;du\\\sin^2u=\;\frac{1-\cos2u}2\\\int\sin^2u\;du\;=\;\int(\frac12-\frac{\cos2u}2)\;du\;=\;\\=\frac12u-\frac12\times\frac{\sin2u}2+C=\frac12u-\frac{\sin2u}4+C=\\=\frac12ax-\frac{\sin2ax}4+C\\\int\sin^2(ax)\;dx\;=\frac1a(\;\frac12ax-\frac{\sin2ax}4)+C=\\=\frac12x-\frac{\sin2ax}{4a}+C∫sin2(ax)dx=a1∫asin2(ax)dxu=ax⇒du=adxSubstituteu.a1∫asin2(ax)dx=a1∫sin2udusin2u=21−cos2u∫sin2udu=∫(21−2cos2u)du==21u−21×2sin2u+C=21u−4sin2u+C==21ax−4sin2ax+C∫sin2(ax)dx=a1(21ax−4sin2ax)+C==21x−4asin2ax+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments