Answer to Question #108783 in Calculus for Nimra

Question #108783

∫sin²(ax)dx


1
Expert's answer
2020-04-14T18:31:56-0400

Answer:"\\int\\sin^2(ax)\\;dx\\;=\\frac12x-\\frac{\\sin\\;2ax}{4a}+C"

"\\int\\sin^2(ax)\\;dx=\\;\\frac1a\\int a\\;\\sin^2(ax)\\;dx\\\\u=ax\\;\\Rightarrow\\;du\\;=\\;a\\;dx\\\\Substitute\\;u.\\\\\\frac1a\\int a\\;\\sin^2(ax)\\;dx=\\frac1a\\int\\sin^2u\\;du\\\\\\sin^2u=\\;\\frac{1-\\cos2u}2\\\\\\int\\sin^2u\\;du\\;=\\;\\int(\\frac12-\\frac{\\cos2u}2)\\;du\\;=\\;\\\\=\\frac12u-\\frac12\\times\\frac{\\sin2u}2+C=\\frac12u-\\frac{\\sin2u}4+C=\\\\=\\frac12ax-\\frac{\\sin2ax}4+C\\\\\\int\\sin^2(ax)\\;dx\\;=\\frac1a(\\;\\frac12ax-\\frac{\\sin2ax}4)+C=\\\\=\\frac12x-\\frac{\\sin2ax}{4a}+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS