Question #108782

∫1/cos(ax) dx


1
Expert's answer
2020-04-14T18:32:39-0400

Answer:1cos  axdx=1alnsec  ax  +  tan  ax+C\int\frac1{\cos\;ax}dx=\frac1a\ln\left|sec\;ax\;+\;\tan\;ax\right|+C

1cos  axdx=  1aa  1cos  ax  dxu=ax    du  =  a  dxSubstitute  u.1aa  1cos  ax  dx=1a1cosu  du==1asec  u  dusec  u  du=sec  u  sec  u  +  tan  usec  u  +  tan  u  du  ==(sec2u+sec  u  tan  u)  dusec  u  +  tan  uv=sec  u  +  tan  udv  =  (sec  u  tan  u  +  sec2u)  duSubstitute  v.(sec2u+sec  u  tan  u)  dusec  u  +  tan  u=dvv==lnv+C=lnsec  u  +  tan  u+C  ==  lnsec  ax  +  tan  ax+C  1cos  axdx=1alnsec  ax  +  tan  ax+C\int\frac1{\cos\;ax}dx=\;\frac1a\int a\;\frac1{\cos\;ax}\;dx\\u=ax\;\Rightarrow\;du\;=\;a\;dx\\Substitute\;u.\\\frac1a\int a\;\frac1{\cos\;ax}\;dx=\frac1a\int\frac1{\cos u}\;du=\\=\frac1a\int sec\;u\;du\\\int sec\;u\;du=\int sec\;u\;\frac{sec\;u\;+\;\tan\;u}{sec\;u\;+\;\tan\;u}\;du\;=\\=\int\frac{(sec^2u+sec\;u\;\tan\;u)\;du}{sec\;u\;+\;\tan\;u}\\v=sec\;u\;+\;\tan\;u\\dv\;=\;(sec\;u\;\tan\;u\;+\;sec^2u)\;du\\Substitute\;v.\\\int\frac{(sec^2u+sec\;u\;\tan\;u)\;du}{sec\;u\;+\;\tan\;u}=\int\frac{dv}v=\\=\ln\left|v\right|+C=\ln\left|sec\;u\;+\;\tan\;u\right|+C\;=\\=\;\ln\left|sec\;ax\;+\;\tan\;ax\right|+C\\\; \int\frac1{\cos\;ax}dx=\frac1a\ln\left|sec\;ax\;+\;\tan\;ax\right|+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS