∫1/cos(ax) dx
"\\int\\frac1{\\cos\\;ax}dx=\\;\\frac1a\\int a\\;\\frac1{\\cos\\;ax}\\;dx\\\\u=ax\\;\\Rightarrow\\;du\\;=\\;a\\;dx\\\\Substitute\\;u.\\\\\\frac1a\\int a\\;\\frac1{\\cos\\;ax}\\;dx=\\frac1a\\int\\frac1{\\cos u}\\;du=\\\\=\\frac1a\\int sec\\;u\\;du\\\\\\int sec\\;u\\;du=\\int sec\\;u\\;\\frac{sec\\;u\\;+\\;\\tan\\;u}{sec\\;u\\;+\\;\\tan\\;u}\\;du\\;=\\\\=\\int\\frac{(sec^2u+sec\\;u\\;\\tan\\;u)\\;du}{sec\\;u\\;+\\;\\tan\\;u}\\\\v=sec\\;u\\;+\\;\\tan\\;u\\\\dv\\;=\\;(sec\\;u\\;\\tan\\;u\\;+\\;sec^2u)\\;du\\\\Substitute\\;v.\\\\\\int\\frac{(sec^2u+sec\\;u\\;\\tan\\;u)\\;du}{sec\\;u\\;+\\;\\tan\\;u}=\\int\\frac{dv}v=\\\\=\\ln\\left|v\\right|+C=\\ln\\left|sec\\;u\\;+\\;\\tan\\;u\\right|+C\\;=\\\\=\\;\\ln\\left|sec\\;ax\\;+\\;\\tan\\;ax\\right|+C\\\\\\;\n\\int\\frac1{\\cos\\;ax}dx=\\frac1a\\ln\\left|sec\\;ax\\;+\\;\\tan\\;ax\\right|+C"
Comments
Leave a comment