Answer to Question #108782 in Calculus for Nimra

Question #108782

∫1/cos(ax) dx


1
Expert's answer
2020-04-14T18:32:39-0400

Answer:"\\int\\frac1{\\cos\\;ax}dx=\\frac1a\\ln\\left|sec\\;ax\\;+\\;\\tan\\;ax\\right|+C"

"\\int\\frac1{\\cos\\;ax}dx=\\;\\frac1a\\int a\\;\\frac1{\\cos\\;ax}\\;dx\\\\u=ax\\;\\Rightarrow\\;du\\;=\\;a\\;dx\\\\Substitute\\;u.\\\\\\frac1a\\int a\\;\\frac1{\\cos\\;ax}\\;dx=\\frac1a\\int\\frac1{\\cos u}\\;du=\\\\=\\frac1a\\int sec\\;u\\;du\\\\\\int sec\\;u\\;du=\\int sec\\;u\\;\\frac{sec\\;u\\;+\\;\\tan\\;u}{sec\\;u\\;+\\;\\tan\\;u}\\;du\\;=\\\\=\\int\\frac{(sec^2u+sec\\;u\\;\\tan\\;u)\\;du}{sec\\;u\\;+\\;\\tan\\;u}\\\\v=sec\\;u\\;+\\;\\tan\\;u\\\\dv\\;=\\;(sec\\;u\\;\\tan\\;u\\;+\\;sec^2u)\\;du\\\\Substitute\\;v.\\\\\\int\\frac{(sec^2u+sec\\;u\\;\\tan\\;u)\\;du}{sec\\;u\\;+\\;\\tan\\;u}=\\int\\frac{dv}v=\\\\=\\ln\\left|v\\right|+C=\\ln\\left|sec\\;u\\;+\\;\\tan\\;u\\right|+C\\;=\\\\=\\;\\ln\\left|sec\\;ax\\;+\\;\\tan\\;ax\\right|+C\\\\\\;\n\\int\\frac1{\\cos\\;ax}dx=\\frac1a\\ln\\left|sec\\;ax\\;+\\;\\tan\\;ax\\right|+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS