Answer to Question #108785 in Calculus for Nimra

Question #108785

∫csc(ax)dx


1
Expert's answer
2020-04-14T18:16:30-0400

Answer: "\\int csc(ax)\\;dx=-\\frac1a\\ln\\left|csc(ax)\\;+\\;cot(ax)\\right|\\;+\\;C\\\\"

"\\int csc(ax)\\;dx=\\frac1a\\int a\\cdot csc(ax)\\;dx\\;\\\\u=ax\\Rightarrow du=adx\\\\Substitute\\;u.\\\\ \\frac1a\\int a\\cdot csc(ax)\\;dx\\;=\\;\\frac1a\\int csc\\;u\\;du\\;\\\\ \\int csc\\;u\\;du\\;=\\;\\;\\int csc\\;u\\frac{csc\\;u\\;+\\;cot\\;u}{csc\\;u\\;+\\;cot\\;u}du=\\\\ =-\\int-\\frac{csc^2\\;u\\;+\\;csc\\;u\\cdot cot\\;u}{csc\\;u\\;+\\;cot\\;u}du\\\\ v\\;=\\;csc\\;u\\;+\\;cot\\;u\\\\ Let's\\;take\\;derivative\\;of\\;v.\\;\\\\ dv=-(csc\\;u\\cdot cot\\;u\\;+\\;csc^2u)\\;du\\\\ Substitute\\;v.\\\\ -\\int-\\frac{(csc^2\\;u\\;+\\;csc\\;u\\cdot cot\\;u)\\;du}{csc\\;u\\;+\\;cot\\;u}=-\\int\\frac{dv}v=\\\\=-\\ln\\left|v\\right|+C=\\\\ =-\\ln\\left|csc\\;u\\;+\\;cot\\;u\\right|+C\\;=\\\\=\\;-\\ln\\left|csc(ax)\\;+\\;cot(ax)\\right|+C\\\\ \\int csc(ax)\\;dx=-\\frac1a\\ln\\left|csc(ax)\\;+\\;cot(ax)\\right|\\;+\\;C\\\\"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS