Answer to Question #108784 in Calculus for Nimra

Question #108784

∫cos²(ax)dx


1
Expert's answer
2020-04-14T13:47:47-0400

Answer: "\\int\\cos^2(ax)\\;dx=\\frac12x+\\frac{\\sin\\;2ax}{4a}+C"

"\\int\\cos^2(ax)\\;dx=\\;\\frac1a\\int a\\;\\cos^2(ax)\\;dx\\\\u=ax\\;\\Rightarrow\\;du\\;=\\;a\\;dx\\\\Substitute\\;u.\\\\\\frac1a\\int a\\;\\cos^2(ax)\\;dx=\\frac1a\\int\\cos^2u\\;du\\\\\\cos^2u=\\;\\frac{1+\\cos\\;2u}2\\\\\\int\\cos^2u\\;du\\;=\\;\\int(\\frac12+\\frac{\\cos\\;2u}2)\\;du\\;=\\;\\\\=\\frac12u+\\frac12\\times\\frac{\\sin2u}2+C=\\frac12u+\\frac{\\sin2u}4+C=\\\\=\\frac12ax+\\frac{\\sin\\;2ax}4+C\\\\\\int\\cos^2(ax)\\;dx\\;=\\frac1a(\\;\\frac12ax+\\frac{\\sin\\;2ax}4)+C=\\\\=\\frac12x+\\frac{\\sin\\;2ax}{4a}+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS