∫cos²(ax)dx
∫cos2(ax) dx= 1a∫a cos2(ax) dxu=ax ⇒ du = a dxSubstitute u.1a∫a cos2(ax) dx=1a∫cos2u ducos2u= 1+cos 2u2∫cos2u du = ∫(12+cos 2u2) du = =12u+12×sin2u2+C=12u+sin2u4+C==12ax+sin 2ax4+C∫cos2(ax) dx =1a( 12ax+sin 2ax4)+C==12x+sin 2ax4a+C\int\cos^2(ax)\;dx=\;\frac1a\int a\;\cos^2(ax)\;dx\\u=ax\;\Rightarrow\;du\;=\;a\;dx\\Substitute\;u.\\\frac1a\int a\;\cos^2(ax)\;dx=\frac1a\int\cos^2u\;du\\\cos^2u=\;\frac{1+\cos\;2u}2\\\int\cos^2u\;du\;=\;\int(\frac12+\frac{\cos\;2u}2)\;du\;=\;\\=\frac12u+\frac12\times\frac{\sin2u}2+C=\frac12u+\frac{\sin2u}4+C=\\=\frac12ax+\frac{\sin\;2ax}4+C\\\int\cos^2(ax)\;dx\;=\frac1a(\;\frac12ax+\frac{\sin\;2ax}4)+C=\\=\frac12x+\frac{\sin\;2ax}{4a}+C∫cos2(ax)dx=a1∫acos2(ax)dxu=ax⇒du=adxSubstituteu.a1∫acos2(ax)dx=a1∫cos2uducos2u=21+cos2u∫cos2udu=∫(21+2cos2u)du==21u+21×2sin2u+C=21u+4sin2u+C==21ax+4sin2ax+C∫cos2(ax)dx=a1(21ax+4sin2ax)+C==21x+4asin2ax+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments