∫cos²(ax)dx
"\\int\\cos^2(ax)\\;dx=\\;\\frac1a\\int a\\;\\cos^2(ax)\\;dx\\\\u=ax\\;\\Rightarrow\\;du\\;=\\;a\\;dx\\\\Substitute\\;u.\\\\\\frac1a\\int a\\;\\cos^2(ax)\\;dx=\\frac1a\\int\\cos^2u\\;du\\\\\\cos^2u=\\;\\frac{1+\\cos\\;2u}2\\\\\\int\\cos^2u\\;du\\;=\\;\\int(\\frac12+\\frac{\\cos\\;2u}2)\\;du\\;=\\;\\\\=\\frac12u+\\frac12\\times\\frac{\\sin2u}2+C=\\frac12u+\\frac{\\sin2u}4+C=\\\\=\\frac12ax+\\frac{\\sin\\;2ax}4+C\\\\\\int\\cos^2(ax)\\;dx\\;=\\frac1a(\\;\\frac12ax+\\frac{\\sin\\;2ax}4)+C=\\\\=\\frac12x+\\frac{\\sin\\;2ax}{4a}+C"
Comments
Leave a comment