∫sin⁻¹(ax) dx
Use integration by parts , let
Then
"\\int \\sin^{-1}(ax) dx=uv-\\int vdu\\\\\n\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ = x\\sin^{-1}(ax)-\\int \\frac{axdx}{\\sqrt{1-(ax)^2}}\\\\\n\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ = x\\sin^{-1}(ax)-\\int ax[1-(ax)^2 ]^{-1\/2}dx, \\\\ \\text{use the rule } \\int u^ndu=\\frac{1}{n+1}u^{n+1} ,\\ \\ \\ \\ \\ \\text{then }\\\\\n\\int \\sin^{-1}(ax) dx= x\\sin^{-1}(ax)+\\frac{1}{a} \\sqrt{1-(ax)^2}+C"
Comments
Leave a comment