Answer to Question #108787 in Calculus for Nimra

Question #108787

∫sin⁻¹(ax) dx


1
Expert's answer
2020-04-16T17:23:38-0400

Use integration by parts , let


"u=\\sin^{-1}(ax) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ dv=dx\\\\\n du=\\frac{adx}{\\sqrt{1-(ax)^2}} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ v=x"

Then

"\\int \\sin^{-1}(ax) dx=uv-\\int vdu\\\\\n\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ = x\\sin^{-1}(ax)-\\int \\frac{axdx}{\\sqrt{1-(ax)^2}}\\\\\n\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ = x\\sin^{-1}(ax)-\\int ax[1-(ax)^2 ]^{-1\/2}dx, \\\\ \\text{use the rule } \\int u^ndu=\\frac{1}{n+1}u^{n+1} ,\\ \\ \\ \\ \\ \\text{then }\\\\\n\\int \\sin^{-1}(ax) dx= x\\sin^{-1}(ax)+\\frac{1}{a} \\sqrt{1-(ax)^2}+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS