Use integration by parts , let
u = sin − 1 ( a x ) d v = d x d u = a d x 1 − ( a x ) 2 v = x u=\sin^{-1}(ax) \ \ \ \ \ \ \ \ \ \ dv=dx\\
du=\frac{adx}{\sqrt{1-(ax)^2}} \ \ \ \ \ \ \ \ \ \ v=x u = sin − 1 ( a x ) d v = d x d u = 1 − ( a x ) 2 a d x v = x Then
∫ sin − 1 ( a x ) d x = u v − ∫ v d u = x sin − 1 ( a x ) − ∫ a x d x 1 − ( a x ) 2 = x sin − 1 ( a x ) − ∫ a x [ 1 − ( a x ) 2 ] − 1 / 2 d x , use the rule ∫ u n d u = 1 n + 1 u n + 1 , then ∫ sin − 1 ( a x ) d x = x sin − 1 ( a x ) + 1 a 1 − ( a x ) 2 + C \int \sin^{-1}(ax) dx=uv-\int vdu\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = x\sin^{-1}(ax)-\int \frac{axdx}{\sqrt{1-(ax)^2}}\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = x\sin^{-1}(ax)-\int ax[1-(ax)^2 ]^{-1/2}dx, \\ \text{use the rule } \int u^ndu=\frac{1}{n+1}u^{n+1} ,\ \ \ \ \ \text{then }\\
\int \sin^{-1}(ax) dx= x\sin^{-1}(ax)+\frac{1}{a} \sqrt{1-(ax)^2}+C ∫ sin − 1 ( a x ) d x = uv − ∫ v d u = x sin − 1 ( a x ) − ∫ 1 − ( a x ) 2 a x d x = x sin − 1 ( a x ) − ∫ a x [ 1 − ( a x ) 2 ] − 1/2 d x , use the rule ∫ u n d u = n + 1 1 u n + 1 , then ∫ sin − 1 ( a x ) d x = x sin − 1 ( a x ) + a 1 1 − ( a x ) 2 + C
Comments