∫tan²(ax) dx
tan2ax=sin2axcos2ax=1−cos2axcos2ax=sec2ax−1∫tan2ax dx = ∫(sec2ax−1) dx == 1a∫a⋅sec2ax dx − ∫dxu = ax ⇒ du=a dxSubstitute u.∫a⋅sec2ax dx = ∫sec2u du == tanu = tan ax1a∫a⋅sec2ax dx=1atan ax∫dx=x∫tan2ax dx = 1atan ax − x + C\tan^2ax=\frac{\sin^2ax}{\cos^2ax}=\frac{1-\cos^2ax}{\cos^2ax}=sec^2ax-1\\\int\tan^2ax\;dx\;=\;\int(sec^2ax-1)\;dx\;=\\=\;\frac1a\int a\cdot sec^2ax\;dx\;-\;\int dx\\u\;=\;ax\;\Rightarrow\;du=a\;dx\\Substitute\;u.\\\int a\cdot sec^2ax\;dx\;=\;\int sec^2u\;du\;=\\=\;\tan u\;=\;\tan\;ax\\\frac1a\int a\cdot sec^2ax\;dx=\frac1a\tan\;ax\\\int dx=x\\\int\tan^2ax\;dx\;=\;\frac1a\tan\;ax\;-\;x\;+\;Ctan2ax=cos2axsin2ax=cos2ax1−cos2ax=sec2ax−1∫tan2axdx=∫(sec2ax−1)dx==a1∫a⋅sec2axdx−∫dxu=ax⇒du=adxSubstituteu.∫a⋅sec2axdx=∫sec2udu==tanu=tanaxa1∫a⋅sec2axdx=a1tanax∫dx=x∫tan2axdx=a1tanax−x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments