∫tan²(ax) dx
"\\tan^2ax=\\frac{\\sin^2ax}{\\cos^2ax}=\\frac{1-\\cos^2ax}{\\cos^2ax}=sec^2ax-1\\\\\\int\\tan^2ax\\;dx\\;=\\;\\int(sec^2ax-1)\\;dx\\;=\\\\=\\;\\frac1a\\int a\\cdot sec^2ax\\;dx\\;-\\;\\int dx\\\\u\\;=\\;ax\\;\\Rightarrow\\;du=a\\;dx\\\\Substitute\\;u.\\\\\\int a\\cdot sec^2ax\\;dx\\;=\\;\\int sec^2u\\;du\\;=\\\\=\\;\\tan u\\;=\\;\\tan\\;ax\\\\\\frac1a\\int a\\cdot sec^2ax\\;dx=\\frac1a\\tan\\;ax\\\\\\int dx=x\\\\\\int\\tan^2ax\\;dx\\;=\\;\\frac1a\\tan\\;ax\\;-\\;x\\;+\\;C"
Comments
Leave a comment