Question #108786

∫tan²(ax) dx


1
Expert's answer
2020-04-15T13:14:28-0400

Answer:tan2ax  dx  =  1atan  ax    x  +  C\int\tan^2ax\;dx\;=\;\frac1a\tan\;ax\;-\;x\;+\;C

tan2ax=sin2axcos2ax=1cos2axcos2ax=sec2ax1tan2ax  dx  =  (sec2ax1)  dx  ==  1aasec2ax  dx    dxu  =  ax    du=a  dxSubstitute  u.asec2ax  dx  =  sec2u  du  ==  tanu  =  tan  ax1aasec2ax  dx=1atan  axdx=xtan2ax  dx  =  1atan  ax    x  +  C\tan^2ax=\frac{\sin^2ax}{\cos^2ax}=\frac{1-\cos^2ax}{\cos^2ax}=sec^2ax-1\\\int\tan^2ax\;dx\;=\;\int(sec^2ax-1)\;dx\;=\\=\;\frac1a\int a\cdot sec^2ax\;dx\;-\;\int dx\\u\;=\;ax\;\Rightarrow\;du=a\;dx\\Substitute\;u.\\\int a\cdot sec^2ax\;dx\;=\;\int sec^2u\;du\;=\\=\;\tan u\;=\;\tan\;ax\\\frac1a\int a\cdot sec^2ax\;dx=\frac1a\tan\;ax\\\int dx=x\\\int\tan^2ax\;dx\;=\;\frac1a\tan\;ax\;-\;x\;+\;C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS