∫(x2+4)(x+1)x2+x+5dx
Let's decompose a fraction:
(x2+4)(x+1)x2+x+5=x2+4Kx+L+x+1M=(x2+4)(x+1)(Kx+L)(x+1)+M(x2+4)=(x2+4)(x+1)Kx2+Kx+Lx+L+Mx2+4M=(x2+4)(x+1)(K+M)x2+(K+L)x+(L+4M)
⎩⎨⎧K+M=1K+L=1L+4M=5
⎩⎨⎧M=1−KL=1−KL+4M=5
1−K+4(1−K)=5
1−K+4−4K=5
−5K=0
K=0
M=1−K=1−0=1
L=1−K=1−0=1
So,
∫(x2+4)(x+1)x2+x+5dx=∫(x2+40x+1+x+11)dx=∫(x2+41+x+11)dx=∫x2+4dx+∫x+1dx=I1+I2
I1=∫x2+4dx=∫x2+22dx=21arctan2x+C
I2=∫x+1dx=ln(x+1)+C
∫(x2+4)(x+1)x2+x+5dx=21arctan2x+ln(x+1)+C
Comments