"\\intop \\frac{x^2+x+5}{(x^2+4)(x+1)} dx"
Let's decompose a fraction:
"\\frac{x^2+x+5}{(x^2+4)(x+1)} = \\frac{Kx+L}{x^2+4} + \\frac{M}{x+1} = \\frac{(Kx+L)(x+1)+M(x^2+4)}{(x^2+4)(x+1)} = \\frac{Kx^2+Kx+Lx+L+Mx^2+4M}{(x^2+4)(x+1)} = \\frac{(K+M)x^2+(K+L)x+(L+4M)}{(x^2+4)(x+1)}"
"\\begin{cases}\n K+M=1 \\\\\nK+L=1 \\\\\nL+4M=5\n\\end{cases}"
"\\begin{cases}\nM=1-K \\\\\nL=1-K \\\\\nL+4M=5\n\\end{cases}"
"1-K+4(1-K)=5"
"1-K+4-4K=5"
"-5K=0"
"K=0"
"M=1-K=1-0=1"
"L=1-K=1-0=1"
So,
"\\intop \\frac{x^2+x+5}{(x^2+4)(x+1)} dx = \\intop (\\frac{0x+1}{x^2+4} + \\frac{1}{x+1})dx = \\intop (\\frac{1}{x^2+4} + \\frac{1}{x+1})dx = \\intop \\frac{dx}{x^2+4} + \\intop \\frac{dx}{x+1} = I_1 + I_2"
"I_1 = \\intop \\frac{dx}{x^2+4} = \\intop \\frac{dx}{x^2+2^2} = \\frac{1}{2} \\arctan \\frac{x}{2} +C"
"I_2 = \\intop \\frac{dx}{x+1} = \\ln (x+1) + C"
"\\intop \\frac{x^2+x+5}{(x^2+4)(x+1)} dx = \\frac{1}{2} \\arctan \\frac{x}{2} + \\ln (x+1) + C"
Comments
Leave a comment