Question #105271
Integrate ∫x^2+x+5/(x^2+4)(x+1)dx
1
Expert's answer
2020-03-13T09:53:08-0400

x2+x+5(x2+4)(x+1)dx\intop \frac{x^2+x+5}{(x^2+4)(x+1)} dx

Let's decompose a fraction:

x2+x+5(x2+4)(x+1)=Kx+Lx2+4+Mx+1=(Kx+L)(x+1)+M(x2+4)(x2+4)(x+1)=Kx2+Kx+Lx+L+Mx2+4M(x2+4)(x+1)=(K+M)x2+(K+L)x+(L+4M)(x2+4)(x+1)\frac{x^2+x+5}{(x^2+4)(x+1)} = \frac{Kx+L}{x^2+4} + \frac{M}{x+1} = \frac{(Kx+L)(x+1)+M(x^2+4)}{(x^2+4)(x+1)} = \frac{Kx^2+Kx+Lx+L+Mx^2+4M}{(x^2+4)(x+1)} = \frac{(K+M)x^2+(K+L)x+(L+4M)}{(x^2+4)(x+1)}

{K+M=1K+L=1L+4M=5\begin{cases} K+M=1 \\ K+L=1 \\ L+4M=5 \end{cases}

{M=1KL=1KL+4M=5\begin{cases} M=1-K \\ L=1-K \\ L+4M=5 \end{cases}

1K+4(1K)=51-K+4(1-K)=5

1K+44K=51-K+4-4K=5

5K=0-5K=0

K=0K=0

M=1K=10=1M=1-K=1-0=1

L=1K=10=1L=1-K=1-0=1

So,

x2+x+5(x2+4)(x+1)dx=(0x+1x2+4+1x+1)dx=(1x2+4+1x+1)dx=dxx2+4+dxx+1=I1+I2\intop \frac{x^2+x+5}{(x^2+4)(x+1)} dx = \intop (\frac{0x+1}{x^2+4} + \frac{1}{x+1})dx = \intop (\frac{1}{x^2+4} + \frac{1}{x+1})dx = \intop \frac{dx}{x^2+4} + \intop \frac{dx}{x+1} = I_1 + I_2

I1=dxx2+4=dxx2+22=12arctanx2+CI_1 = \intop \frac{dx}{x^2+4} = \intop \frac{dx}{x^2+2^2} = \frac{1}{2} \arctan \frac{x}{2} +C

I2=dxx+1=ln(x+1)+CI_2 = \intop \frac{dx}{x+1} = \ln (x+1) + C

x2+x+5(x2+4)(x+1)dx=12arctanx2+ln(x+1)+C\intop \frac{x^2+x+5}{(x^2+4)(x+1)} dx = \frac{1}{2} \arctan \frac{x}{2} + \ln (x+1) + C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS