∫ x 2 + x + 5 ( x 2 + 4 ) ( x + 1 ) d x \intop \frac{x^2+x+5}{(x^2+4)(x+1)} dx ∫ ( x 2 + 4 ) ( x + 1 ) x 2 + x + 5 d x
Let's decompose a fraction:
x 2 + x + 5 ( x 2 + 4 ) ( x + 1 ) = K x + L x 2 + 4 + M x + 1 = ( K x + L ) ( x + 1 ) + M ( x 2 + 4 ) ( x 2 + 4 ) ( x + 1 ) = K x 2 + K x + L x + L + M x 2 + 4 M ( x 2 + 4 ) ( x + 1 ) = ( K + M ) x 2 + ( K + L ) x + ( L + 4 M ) ( x 2 + 4 ) ( x + 1 ) \frac{x^2+x+5}{(x^2+4)(x+1)} = \frac{Kx+L}{x^2+4} + \frac{M}{x+1} = \frac{(Kx+L)(x+1)+M(x^2+4)}{(x^2+4)(x+1)} = \frac{Kx^2+Kx+Lx+L+Mx^2+4M}{(x^2+4)(x+1)} = \frac{(K+M)x^2+(K+L)x+(L+4M)}{(x^2+4)(x+1)} ( x 2 + 4 ) ( x + 1 ) x 2 + x + 5 = x 2 + 4 K x + L + x + 1 M = ( x 2 + 4 ) ( x + 1 ) ( K x + L ) ( x + 1 ) + M ( x 2 + 4 ) = ( x 2 + 4 ) ( x + 1 ) K x 2 + K x + Lx + L + M x 2 + 4 M = ( x 2 + 4 ) ( x + 1 ) ( K + M ) x 2 + ( K + L ) x + ( L + 4 M )
{ K + M = 1 K + L = 1 L + 4 M = 5 \begin{cases}
K+M=1 \\
K+L=1 \\
L+4M=5
\end{cases} ⎩ ⎨ ⎧ K + M = 1 K + L = 1 L + 4 M = 5
{ M = 1 − K L = 1 − K L + 4 M = 5 \begin{cases}
M=1-K \\
L=1-K \\
L+4M=5
\end{cases} ⎩ ⎨ ⎧ M = 1 − K L = 1 − K L + 4 M = 5
1 − K + 4 ( 1 − K ) = 5 1-K+4(1-K)=5 1 − K + 4 ( 1 − K ) = 5
1 − K + 4 − 4 K = 5 1-K+4-4K=5 1 − K + 4 − 4 K = 5
− 5 K = 0 -5K=0 − 5 K = 0
K = 0 K=0 K = 0
M = 1 − K = 1 − 0 = 1 M=1-K=1-0=1 M = 1 − K = 1 − 0 = 1
L = 1 − K = 1 − 0 = 1 L=1-K=1-0=1 L = 1 − K = 1 − 0 = 1
So,
∫ x 2 + x + 5 ( x 2 + 4 ) ( x + 1 ) d x = ∫ ( 0 x + 1 x 2 + 4 + 1 x + 1 ) d x = ∫ ( 1 x 2 + 4 + 1 x + 1 ) d x = ∫ d x x 2 + 4 + ∫ d x x + 1 = I 1 + I 2 \intop \frac{x^2+x+5}{(x^2+4)(x+1)} dx = \intop (\frac{0x+1}{x^2+4} + \frac{1}{x+1})dx = \intop (\frac{1}{x^2+4} + \frac{1}{x+1})dx = \intop \frac{dx}{x^2+4} + \intop \frac{dx}{x+1} = I_1 + I_2 ∫ ( x 2 + 4 ) ( x + 1 ) x 2 + x + 5 d x = ∫ ( x 2 + 4 0 x + 1 + x + 1 1 ) d x = ∫ ( x 2 + 4 1 + x + 1 1 ) d x = ∫ x 2 + 4 d x + ∫ x + 1 d x = I 1 + I 2
I 1 = ∫ d x x 2 + 4 = ∫ d x x 2 + 2 2 = 1 2 arctan x 2 + C I_1 = \intop \frac{dx}{x^2+4} = \intop \frac{dx}{x^2+2^2} = \frac{1}{2} \arctan \frac{x}{2} +C I 1 = ∫ x 2 + 4 d x = ∫ x 2 + 2 2 d x = 2 1 arctan 2 x + C
I 2 = ∫ d x x + 1 = ln ( x + 1 ) + C I_2 = \intop \frac{dx}{x+1} = \ln (x+1) + C I 2 = ∫ x + 1 d x = ln ( x + 1 ) + C
∫ x 2 + x + 5 ( x 2 + 4 ) ( x + 1 ) d x = 1 2 arctan x 2 + ln ( x + 1 ) + C \intop \frac{x^2+x+5}{(x^2+4)(x+1)} dx = \frac{1}{2} \arctan \frac{x}{2} + \ln (x+1) + C ∫ ( x 2 + 4 ) ( x + 1 ) x 2 + x + 5 d x = 2 1 arctan 2 x + ln ( x + 1 ) + C
Comments