I = ∫ ( 3 x + 1 ) 4 x 2 + 12 x + 5 d x = ∫ ( 3 x + 1 ) ( 2 x + 3 ) 2 − 4 d x = I=\int(3x+1)\sqrt{4x^2+12x+5}dx=\int(3x+1)\sqrt{(2x+3)^2-4}dx= I = ∫ ( 3 x + 1 ) 4 x 2 + 12 x + 5 d x = ∫ ( 3 x + 1 ) ( 2 x + 3 ) 2 − 4 d x =
= ∫ 3 2 ( 2 x + 3 ) ( 2 x + 3 ) 2 − 4 − 7 2 ( 2 x + 3 ) 2 − 4 d x =\int\frac{3}{2}(2x+3)\sqrt{(2x+3)^2-4}-\frac{7}{2}\sqrt{(2x+3)^2-4}dx = ∫ 2 3 ( 2 x + 3 ) ( 2 x + 3 ) 2 − 4 − 2 7 ( 2 x + 3 ) 2 − 4 d x
A = ∫ ( 2 x + 3 ) 2 − 4 d x = [ u = 2 x + 3 ; d u = 2 d x ] = 1 2 ∫ u 2 − 4 d u = A=\int\sqrt{(2x+3)^2-4}dx=[u=2x+3;du=2dx]=\frac{1}{2}\int\sqrt{u^2-4}du= A = ∫ ( 2 x + 3 ) 2 − 4 d x = [ u = 2 x + 3 ; d u = 2 d x ] = 2 1 ∫ u 2 − 4 d u =
= [ u = 2 sec v ; d u = 2 sec v tan v d v ] = 1 2 ∫ 2 sec v 4 sec 2 v − 4 tan v d v = =[u=2\sec v;du=2\sec v \tan v dv]=\frac{1}{2}\int2\sec v\sqrt{4\sec^2v-4}\tan vdv= = [ u = 2 sec v ; d u = 2 sec v tan v d v ] = 2 1 ∫ 2 sec v 4 sec 2 v − 4 tan v d v =
= 2 ∫ sec v tan 2 v d v = 2 ∫ sec v ( sec 2 v − 1 ) d v = 2 ∫ sec 3 v − sec v d v = =2\int\sec v\tan^2vdv=2\int\sec v(\sec^2v-1)dv=2\int\sec^3 v-\sec vdv= = 2 ∫ sec v tan 2 v d v = 2 ∫ sec v ( sec 2 v − 1 ) d v = 2 ∫ sec 3 v − sec v d v =
= sec v tan v − ln ( tan v + sec v ) = [ v = a r c s e c u 2 ] = u u 2 4 − 1 + =\sec v\tan v-\ln(\tan v+ \sec v)=[v=arcsec\frac{u}{2}]=u\sqrt{\frac{u^2}{4}-1}+ = sec v tan v − ln ( tan v + sec v ) = [ v = a rcsec 2 u ] = u 4 u 2 − 1 +
+ 2 ln u 2 4 − 1 + u 2 = 1 4 ( 2 x + 3 ) ( 2 x + 3 ) 2 − 4 − ln ( 2 x + 3 ) 2 − 4 + 2 x + 3 2 + c o n s t +2\ln\sqrt{\frac{u^2}{4}-1}+\frac{u}{2}=\frac{1}{4}(2x+3)\sqrt{(2x+3)^2-4}-\ln\frac{\sqrt{(2x+3)^2-4}+2x+3}{2}+const + 2 ln 4 u 2 − 1 + 2 u = 4 1 ( 2 x + 3 ) ( 2 x + 3 ) 2 − 4 − ln 2 ( 2 x + 3 ) 2 − 4 + 2 x + 3 + co n s t
B = ∫ ( 2 x + 3 ) ( 2 x + 3 ) 2 − 4 = [ u = ( 2 x + 3 ) 2 − 4 ; d u = 4 ( 2 x + 3 ) d x ] = 1 4 ∫ u d u = B=\int(2x+3)\sqrt{(2x+3)^2-4}=[u=(2x+3)^2-4;du=4(2x+3)dx]=\frac{1}{4}\int\sqrt{u}du= B = ∫ ( 2 x + 3 ) ( 2 x + 3 ) 2 − 4 = [ u = ( 2 x + 3 ) 2 − 4 ; d u = 4 ( 2 x + 3 ) d x ] = 4 1 ∫ u d u =
= 2 12 u 3 / 2 = 1 6 ( ( 2 x + 3 ) 2 − 4 ) ( 2 x + 3 ) 2 − 4 + c o n s t =\frac{2}{12}u^{3/2}=\frac{1}{6}((2x+3)^2-4)\sqrt{(2x+3)^2-4}+const = 12 2 u 3/2 = 6 1 (( 2 x + 3 ) 2 − 4 ) ( 2 x + 3 ) 2 − 4 + co n s t
I = 3 2 B − 7 2 A = 1 4 ( ( 2 x + 3 ) 2 − 4 ) ( 2 x + 3 ) 2 − 4 − 7 8 ( 2 x + 3 ) ( 2 x + 3 ) 2 − 4 + I=\frac{3}{2}B-\frac{7}{2}A=\frac{1}{4}((2x+3)^2-4)\sqrt{(2x+3)^2-4}-\frac{7}{8}(2x+3)\sqrt{(2x+3)^2-4}+ I = 2 3 B − 2 7 A = 4 1 (( 2 x + 3 ) 2 − 4 ) ( 2 x + 3 ) 2 − 4 − 8 7 ( 2 x + 3 ) ( 2 x + 3 ) 2 − 4 +
+ 7 2 ln ( 2 x + 3 ) 2 − 4 + 2 x + 3 2 = ( 2 x + 3 ) 2 − 4 ( x 2 + 3 x + 9 4 − 4 − 7 4 x − 21 8 ) + +\frac{7}{2}\ln\frac{\sqrt{(2x+3)^2-4}+2x+3}{2}=\sqrt{(2x+3)^2-4}(x^2+3x+\frac{9}{4}-4-\frac{7}{4}x-\frac{21}{8})+ + 2 7 ln 2 ( 2 x + 3 ) 2 − 4 + 2 x + 3 = ( 2 x + 3 ) 2 − 4 ( x 2 + 3 x + 4 9 − 4 − 4 7 x − 8 21 ) +
+ 7 2 ln ( 2 x + 3 ) 2 − 4 + 2 x + 3 2 = ( 2 x + 3 ) 2 − 4 ( x 2 + 5 x 4 − 11 8 ) + +\frac{7}{2}\ln\frac{\sqrt{(2x+3)^2-4}+2x+3}{2}=\sqrt{(2x+3)^2-4}(x^2+\frac{5x}{4}-\frac{11}{8})+ + 2 7 ln 2 ( 2 x + 3 ) 2 − 4 + 2 x + 3 = ( 2 x + 3 ) 2 − 4 ( x 2 + 4 5 x − 8 11 ) +
+ 7 2 ln ( ( 2 x + 3 ) 2 − 4 + 2 x + 3 ) + c o n s t +\frac{7}{2}\ln(\sqrt{(2x+3)^2-4}+2x+3)+const + 2 7 ln ( ( 2 x + 3 ) 2 − 4 + 2 x + 3 ) + co n s t
Comments