I=∫(3x+1)4x2+12x+5dx=∫(3x+1)(2x+3)2−4dx=
=∫23(2x+3)(2x+3)2−4−27(2x+3)2−4dx
A=∫(2x+3)2−4dx=[u=2x+3;du=2dx]=21∫u2−4du=
=[u=2secv;du=2secvtanvdv]=21∫2secv4sec2v−4tanvdv=
=2∫secvtan2vdv=2∫secv(sec2v−1)dv=2∫sec3v−secvdv=
=secvtanv−ln(tanv+secv)=[v=arcsec2u]=u4u2−1+
+2ln4u2−1+2u=41(2x+3)(2x+3)2−4−ln2(2x+3)2−4+2x+3+const
B=∫(2x+3)(2x+3)2−4=[u=(2x+3)2−4;du=4(2x+3)dx]=41∫udu=
=122u3/2=61((2x+3)2−4)(2x+3)2−4+const
I=23B−27A=41((2x+3)2−4)(2x+3)2−4−87(2x+3)(2x+3)2−4+
+27ln2(2x+3)2−4+2x+3=(2x+3)2−4(x2+3x+49−4−47x−821)+
+27ln2(2x+3)2−4+2x+3=(2x+3)2−4(x2+45x−811)+
+27ln((2x+3)2−4+2x+3)+const
Comments