Question #105270
Integrate ∫(3x+1)sqrt (4x^2+12x+5)dx
1
Expert's answer
2020-03-16T10:59:37-0400

I=(3x+1)4x2+12x+5dx=(3x+1)(2x+3)24dx=I=\int(3x+1)\sqrt{4x^2+12x+5}dx=\int(3x+1)\sqrt{(2x+3)^2-4}dx=

=32(2x+3)(2x+3)2472(2x+3)24dx=\int\frac{3}{2}(2x+3)\sqrt{(2x+3)^2-4}-\frac{7}{2}\sqrt{(2x+3)^2-4}dx


A=(2x+3)24dx=[u=2x+3;du=2dx]=12u24du=A=\int\sqrt{(2x+3)^2-4}dx=[u=2x+3;du=2dx]=\frac{1}{2}\int\sqrt{u^2-4}du=

=[u=2secv;du=2secvtanvdv]=122secv4sec2v4tanvdv==[u=2\sec v;du=2\sec v \tan v dv]=\frac{1}{2}\int2\sec v\sqrt{4\sec^2v-4}\tan vdv=

=2secvtan2vdv=2secv(sec2v1)dv=2sec3vsecvdv==2\int\sec v\tan^2vdv=2\int\sec v(\sec^2v-1)dv=2\int\sec^3 v-\sec vdv=

=secvtanvln(tanv+secv)=[v=arcsecu2]=uu241+=\sec v\tan v-\ln(\tan v+ \sec v)=[v=arcsec\frac{u}{2}]=u\sqrt{\frac{u^2}{4}-1}+

+2lnu241+u2=14(2x+3)(2x+3)24ln(2x+3)24+2x+32+const+2\ln\sqrt{\frac{u^2}{4}-1}+\frac{u}{2}=\frac{1}{4}(2x+3)\sqrt{(2x+3)^2-4}-\ln\frac{\sqrt{(2x+3)^2-4}+2x+3}{2}+const

B=(2x+3)(2x+3)24=[u=(2x+3)24;du=4(2x+3)dx]=14udu=B=\int(2x+3)\sqrt{(2x+3)^2-4}=[u=(2x+3)^2-4;du=4(2x+3)dx]=\frac{1}{4}\int\sqrt{u}du=

=212u3/2=16((2x+3)24)(2x+3)24+const=\frac{2}{12}u^{3/2}=\frac{1}{6}((2x+3)^2-4)\sqrt{(2x+3)^2-4}+const

I=32B72A=14((2x+3)24)(2x+3)2478(2x+3)(2x+3)24+I=\frac{3}{2}B-\frac{7}{2}A=\frac{1}{4}((2x+3)^2-4)\sqrt{(2x+3)^2-4}-\frac{7}{8}(2x+3)\sqrt{(2x+3)^2-4}+

+72ln(2x+3)24+2x+32=(2x+3)24(x2+3x+94474x218)++\frac{7}{2}\ln\frac{\sqrt{(2x+3)^2-4}+2x+3}{2}=\sqrt{(2x+3)^2-4}(x^2+3x+\frac{9}{4}-4-\frac{7}{4}x-\frac{21}{8})+

+72ln(2x+3)24+2x+32=(2x+3)24(x2+5x4118)++\frac{7}{2}\ln\frac{\sqrt{(2x+3)^2-4}+2x+3}{2}=\sqrt{(2x+3)^2-4}(x^2+\frac{5x}{4}-\frac{11}{8})+

+72ln((2x+3)24+2x+3)+const+\frac{7}{2}\ln(\sqrt{(2x+3)^2-4}+2x+3)+const


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS