"I=\\int(3x+1)\\sqrt{4x^2+12x+5}dx=\\int(3x+1)\\sqrt{(2x+3)^2-4}dx="
"=\\int\\frac{3}{2}(2x+3)\\sqrt{(2x+3)^2-4}-\\frac{7}{2}\\sqrt{(2x+3)^2-4}dx"
"A=\\int\\sqrt{(2x+3)^2-4}dx=[u=2x+3;du=2dx]=\\frac{1}{2}\\int\\sqrt{u^2-4}du="
"=[u=2\\sec v;du=2\\sec v \\tan v dv]=\\frac{1}{2}\\int2\\sec v\\sqrt{4\\sec^2v-4}\\tan vdv="
"=2\\int\\sec v\\tan^2vdv=2\\int\\sec v(\\sec^2v-1)dv=2\\int\\sec^3 v-\\sec vdv="
"=\\sec v\\tan v-\\ln(\\tan v+ \\sec v)=[v=arcsec\\frac{u}{2}]=u\\sqrt{\\frac{u^2}{4}-1}+"
"+2\\ln\\sqrt{\\frac{u^2}{4}-1}+\\frac{u}{2}=\\frac{1}{4}(2x+3)\\sqrt{(2x+3)^2-4}-\\ln\\frac{\\sqrt{(2x+3)^2-4}+2x+3}{2}+const"
"B=\\int(2x+3)\\sqrt{(2x+3)^2-4}=[u=(2x+3)^2-4;du=4(2x+3)dx]=\\frac{1}{4}\\int\\sqrt{u}du="
"=\\frac{2}{12}u^{3\/2}=\\frac{1}{6}((2x+3)^2-4)\\sqrt{(2x+3)^2-4}+const"
"I=\\frac{3}{2}B-\\frac{7}{2}A=\\frac{1}{4}((2x+3)^2-4)\\sqrt{(2x+3)^2-4}-\\frac{7}{8}(2x+3)\\sqrt{(2x+3)^2-4}+"
"+\\frac{7}{2}\\ln\\frac{\\sqrt{(2x+3)^2-4}+2x+3}{2}=\\sqrt{(2x+3)^2-4}(x^2+3x+\\frac{9}{4}-4-\\frac{7}{4}x-\\frac{21}{8})+"
"+\\frac{7}{2}\\ln\\frac{\\sqrt{(2x+3)^2-4}+2x+3}{2}=\\sqrt{(2x+3)^2-4}(x^2+\\frac{5x}{4}-\\frac{11}{8})+"
"+\\frac{7}{2}\\ln(\\sqrt{(2x+3)^2-4}+2x+3)+const"
Comments
Leave a comment