v(t)=90.25(1−e−t/7)v(2.6)=90.25(1−e−2.6/7)≈28(m/s)v(7)=90.25(1−e−7/7)≈57(m/s)
s=∫09.675v(t)dt=∫09.67590.25(1−e−t/7)dt==90.25[t+7e−t/7]9.6750==90.25(9.675+7e−9.675/7−0−7)≈400.01(m)
v(9.675)=90.25(1−e−9.675/7)≈67.59(m/s)
Check the work of the model amd compare the results
v(2.6)=90.25(1−e−2.6/7)≈28(m/s), True
v(7)=90.25(1−e−7/7)≈57(m/s), True Time of reach 400m
t400=9.675 s<10.46 s
δ=10.46∣9.675−10.46∣⋅100%≈7.5%
I think based on the results of calculations, a model can be adopted to solve the problem.
Comments