"v(t)=90.25(1-e^{-t\/7})""v(2.6)=90.25(1-e^{-2.6\/7})\\approx28 (m\/s)""v(7)=90.25(1-e^{-7\/7})\\approx57 (m\/s)"
"s=\\displaystyle\\int_{0}^{9.675}v(t)dt=\\displaystyle\\int_{0}^{9.675}90.25(1-e^{-t\/7})dt=""=90.25\\bigg[t+7e^{-t\/7}\\bigg]\\begin{matrix}\n 9.675\\\\\n 0\n\\end{matrix}=""=90.25(9.675+7e^{-9.675\/7}-0-7)\\approx400.01 (m)"
"v(9.675)=90.25(1-e^{-9.675\/7})\\approx67.59 (m\/s)"
Check the work of the model amd compare the results
"v(2.6)=90.25(1-e^{-2.6\/7})\\approx28 (m\/s), \\ True"
"v(7)=90.25(1-e^{-7\/7})\\approx57 (m\/s),\\ True" Time of reach 400m
"t_{400}=9.675\\ s<10.46\\ s"
"\\delta={|9.675-10.46| \\over 10.46}\\cdot100\\%\\approx7.5\\%"
I think based on the results of calculations, a model can be adopted to solve the problem.
Comments
Leave a comment