Question #105052
For what values of x is the graph of y=xe^−2x concave down?
1
Expert's answer
2020-03-10T12:48:44-0400

Graph of function f(x) is concave down when f"(x) < 0


y=xe2xy=xe^{-2x}

Differentiating with respect to x

y=e2x+xe2x(2)y'=e^{-2x}+x\cdot e^{-2x}(-2)

y=e2x(12x)\Rightarrow y'=e^{-2x}\left(1-2x\right)

Differentiating with respect to x again

y=e2x(02)+(12x)e2x(2)y''=e^{-2x}(0-2)+(1-2x)e^{-2x}\cdot(-2)

y=e2x(22(12x))\Rightarrow y''=e^{-2x}(-2-2(1-2x))

y=e2x(22+4x)\Rightarrow y''=e^{-2x}(-2-2+4x)

y=(4x4)e2x\Rightarrow y''=(4x-4)e^{-2x}

point of inflection when y=0y''=0

Since e2xe^{-2x} is always positive

(4x4)=0(4x-4)=0

x=1x=1

We need to check sign of yy'' for x < 1 and x >1

When x < 1 ( let x = 0)

y=e20(404)=1(04)=4<0y'' = e^{-2 \cdot 0}(4 \cdot0-4)=1 (0-4)=-4 < 0 ................concave downward

when x > 1 (let x=2)

y=e22(424)=e440.07>0y''=e^{-2 \cdot 2}(4 \cdot 2-4)=e^{-4}\cdot 4 \approx 0.07 >0 ............concave upward


Thus, graph of y=xe2xy=xe^{-2x} is concave down for x <1

In interval notation, graph of y=xe2xy=xe^{-2x} is concave down in (,1)(-\infty, 1)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS