Graph of function f(x) is concave down when f"(x) < 0
"y=xe^{-2x}"
Differentiating with respect to x
"y'=e^{-2x}+x\\cdot e^{-2x}(-2)"
"\\Rightarrow y'=e^{-2x}\\left(1-2x\\right)"
Differentiating with respect to x again
"y''=e^{-2x}(0-2)+(1-2x)e^{-2x}\\cdot(-2)"
"\\Rightarrow y''=e^{-2x}(-2-2(1-2x))"
"\\Rightarrow y''=e^{-2x}(-2-2+4x)"
"\\Rightarrow y''=(4x-4)e^{-2x}"
point of inflection when "y''=0"
Since "e^{-2x}" is always positive
"(4x-4)=0"
"x=1"
We need to check sign of "y''" for x < 1 and x >1
When x < 1 ( let x = 0)
"y'' = e^{-2 \\cdot 0}(4 \\cdot0-4)=1 (0-4)=-4 < 0" ................concave downward
when x > 1 (let x=2)
"y''=e^{-2 \\cdot 2}(4 \\cdot 2-4)=e^{-4}\\cdot 4 \\approx 0.07 >0" ............concave upward
Thus, graph of "y=xe^{-2x}" is concave down for x <1
In interval notation, graph of "y=xe^{-2x}" is concave down in "(-\\infty, 1)"
Comments
Leave a comment