For tangency,
sinx=ke−xsin x=ke^{-x}sinx=ke−x and cosx=−ke−xcos x= -ke^{-x}cosx=−ke−x
sinx=−cosx=ke−xsinx=-cos x=ke^{-x}sinx=−cosx=ke−x
tanx=−1forx=nπ+3π/4tanx=-1 for x= nπ+3π/4tanx=−1forx=nπ+3π/4
1/2=ke−3π/4;x=3π/4;n=01/\sqrt{2}=ke^{-3π/4} ; x = 3π/4 ; n=01/2=ke−3π/4;x=3π/4;n=0
k=e3π/42k=\frac {e^{3π/4}}{\sqrt{2}}k=2e3π/4
Coordinates of the point of tangency (3π4,12)(\frac{3π}{4},\frac 1{\sqrt{2}})(43π,21)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment