For tangency,
"sin x=ke^{-x}" and "cos x= -ke^{-x}"
"sinx=-cos x=ke^{-x}"
"tanx=-1 for x= n\u03c0+3\u03c0\/4"
"1\/\\sqrt{2}=ke^{-3\u03c0\/4} ; x = 3\u03c0\/4 ; n=0"
"k=\\frac {e^{3\u03c0\/4}}{\\sqrt{2}}"
Coordinates of the point of tangency "(\\frac{3\u03c0}{4},\\frac 1{\\sqrt{2}})"
Comments
Leave a comment