Answer to Question #104989 in Calculus for Hitesh

Question #104989
Trace the curve y =
\sqrt[3]{ {x}^{2} - 1}
3

x
2
−1


and state all the properties you use to trace it
1
Expert's answer
2020-03-09T13:57:34-0400

Solution:

 y=x213~\\y=\sqrt[3]{x^2-1}


1.Thej domain : x(,+)~x\in(-\infty,+\infty)


2. Intersection points with coordinate axes:

Ox:y=0x21=0x1=1,x2=1A(1,0),B(1,0)Oy:x=0y3=1y=1C(0,1)Ox: y=0\to x^2-1=0 \to x_1=1, x_2=-1\to A(1,0), B(-1,0)\\ Oy:x=0\to y^3=-1\to y=-1\to C(0,-1)

the graph is symmetric about the axis Oy


4. The function is continuous


5. We find the critical points: y=13(x21)232xx=0,x=1,x=1y'=\frac{1}{3}(x^2-1)^{-\frac{2}{3}}\cdot2x\to x=0, x=1,x=-1


x(,1)(1,0),y<0yx(0,1)(1,),y>0yx\in(-\infty,-1)\cup(-1,0), y' \lt 0\to y\searrow\\ x\in(0,1)\cup(1,\infty), y' \gt 0 \to y\nearrow\\


Then x=0x=0  is the minimum point y=1,x=0y=-1,x=0


6. Find the inflection points:

y=23(x21)23+23x(23)(x21)53=y''=\frac{2}{3}(x^2-1)^{-\frac{2}{3}}+\frac{2}{3}x\cdot(-\frac{2}{3})(x^2-1)^{-\frac{5}{3}} =

23(x21)53(x2143x2)=23(x21)53(13x21) x(,1)(1,+)y<0x(1,1)y>0\frac{2}{3}(x^2-1)^{-\frac{5}{3}}(x^2-1-\frac{4}{3}x^2) =\frac{2}{3}(x^2-1)^{-\frac{5}{3}}(-\frac{1}{3}x^2-1)\\~\\ x\in(-\infty,-1)\cup(1,+\infty)\to y'' \lt 0\\ x\in (-1,1)\to y'' \gt 0



7. There are no vertical asymptotes horizontal asymptote:y=kx+b      k=limxx213x=0b=limx(x2130x)=y=kx+b~~~\to~~~ k=\lim_{x\to\infty} \frac{\sqrt[3]{x^2-1}}{x}=0\\ b=\lim_{x\to\infty} (\sqrt[3]{x^2-1}-0\cdot x)=\infty

there are no horizontaltical asymptotes


8. Intervals for the range:

y>0x21>0, x2>1x(;1)(1;)y<0x(1;1)y \gt 0 \to x^2-1 \gt 0,~ x^2 \gt 1 \to x\in(-\infty;-1)\cap (1;\infty)\\ y \lt 0\to x\in(-1;1)


9. Behavior at infinity: [x,y+x+,y+]\begin{bmatrix} x\to-\infty, y\to+\infty\\ x\to+\infty, y\to+\infty \end{bmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment