Solution:
 y=3x2−1 
1.Thej domain : x∈(−∞,+∞) 
2. Intersection points with coordinate axes:  
Ox:y=0→x2−1=0→x1=1,x2=−1→A(1,0),B(−1,0)Oy:x=0→y3=−1→y=−1→C(0,−1) 
the graph is symmetric about the axis Oy
4. The function is continuous
5. We find the critical points: y′=31(x2−1)−32⋅2x→x=0,x=1,x=−1 
x∈(−∞,−1)∪(−1,0),y′<0→y↘x∈(0,1)∪(1,∞),y′>0→y↗ 
Then x=0  is the minimum point y=−1,x=0 
6. Find the inflection points:
 y′′=32(x2−1)−32+32x⋅(−32)(x2−1)−35= 
32(x2−1)−35(x2−1−34x2)=32(x2−1)−35(−31x2−1) x∈(−∞,−1)∪(1,+∞)→y′′<0x∈(−1,1)→y′′>0 
7. There are no vertical asymptotes horizontal asymptote:y=kx+b   →   k=limx→∞x3x2−1=0b=limx→∞(3x2−1−0⋅x)=∞ 
there are no horizontaltical asymptotes
8. Intervals for the range: 
y>0→x2−1>0, x2>1→x∈(−∞;−1)∩(1;∞)y<0→x∈(−1;1) 
9. Behavior at infinity: [x→−∞,y→+∞x→+∞,y→+∞] 
                             
Comments