Solution:
"~\\\\y=\\sqrt[3]{x^2-1}"
1.Thej domain :"~x\\in(-\\infty,+\\infty)"
2. Intersection points with coordinate axes:
"Ox: y=0\\to x^2-1=0 \\to x_1=1, x_2=-1\\to A(1,0), B(-1,0)\\\\\n Oy:x=0\\to y^3=-1\\to y=-1\\to C(0,-1)"
the graph is symmetric about the axis Oy
4. The function is continuous
5. We find the critical points: "y'=\\frac{1}{3}(x^2-1)^{-\\frac{2}{3}}\\cdot2x\\to x=0, x=1,x=-1"
"x\\in(-\\infty,-1)\\cup(-1,0), y' \\lt 0\\to y\\searrow\\\\ x\\in(0,1)\\cup(1,\\infty), y' \\gt 0 \\to y\\nearrow\\\\"
Then "x=0" is the minimum point "y=-1,x=0"
6. Find the inflection points:
"y''=\\frac{2}{3}(x^2-1)^{-\\frac{2}{3}}+\\frac{2}{3}x\\cdot(-\\frac{2}{3})(x^2-1)^{-\\frac{5}{3}} ="
"\\frac{2}{3}(x^2-1)^{-\\frac{5}{3}}(x^2-1-\\frac{4}{3}x^2) =\\frac{2}{3}(x^2-1)^{-\\frac{5}{3}}(-\\frac{1}{3}x^2-1)\\\\~\\\\ x\\in(-\\infty,-1)\\cup(1,+\\infty)\\to y'' \\lt 0\\\\ x\\in (-1,1)\\to y'' \\gt 0"
7. There are no vertical asymptotes horizontal asymptote:"y=kx+b~~~\\to~~~ k=\\lim_{x\\to\\infty} \\frac{\\sqrt[3]{x^2-1}}{x}=0\\\\ b=\\lim_{x\\to\\infty} (\\sqrt[3]{x^2-1}-0\\cdot x)=\\infty"
there are no horizontaltical asymptotes
8. Intervals for the range:
"y \\gt 0 \\to x^2-1 \\gt 0,~ x^2 \\gt 1 \\to x\\in(-\\infty;-1)\\cap (1;\\infty)\\\\\n y \\lt 0\\to x\\in(-1;1)"
9. Behavior at infinity: "\\begin{bmatrix}\n x\\to-\\infty, y\\to+\\infty\\\\\nx\\to+\\infty, y\\to+\\infty\n\\end{bmatrix}"
Comments
Leave a comment