"v(t)=90.25(1-e^{-t\/7})""v(2.6)=90.25(1-e^{-2.6\/7})\\approx28 (m\/s)""v(7)=90.25(1-e^{-7\/7})\\approx57 (m\/s)""s=\\displaystyle\\int_{0}^{9.675}v(t)dt=\\displaystyle\\int_{0}^{9.675}90.25(1-e^{-t\/7})dt=""=90.25\\bigg[t+7e^{-t\/7}\\bigg]\\begin{matrix}\n 9.675\\\\\n 0\n\\end{matrix}=90.25(9.675+7e^{-9.675\/7}-0-7)\\approx""=400.01 (m)"
"v(9.675)=90.25(1-e^{-9.675\/7})\\approx67.59 (m\/s)""rectangle: 67.59\\ m\/s \\times\\ 9.675 \\ s=653.93\\ m"
Check the work of the model and compare results
"v(2.6)=90.25(1-e^{-2.6\/7})\\approx28 (m\/s),\\ True"
"v(7)=90.25(1-e^{-7\/7})\\approx57 (m\/s)" Time of reach 400m
"t_{400}=9.675 \\ s<10.46 \\ s"
"\\delta={|9.675-10.46| \\over 10.46}\\cdot100\\%\\approx 7.5\\%" I think based on the results, a model can be adopted to solve the problem.
Comments
Leave a comment